Warning: mkdir(): No space left on device in /var/www/group-telegram/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/cme_channel/--): Failed to open stream: No such file or directory in /var/www/group-telegram/post.php on line 50
Непрерывное математическое образование | Telegram Webview: cme_channel/3512 -
Telegram Group & Telegram Channel
Forwarded from ppetya
Первая часть шестнадцатой проблемы Гильберта содержит в себе вопрос о взаимном расположении овалов вещественной алгебраической кривой на вещественной проективной плоскости -- у нас все кривые вещественны сейчас. Если кривая задана однородным многочленом P(x,y,z)=0 и степень многочлена P равна n, то число ее компонент связности не больше 1/2(n-1)(n-2)+1. Это теорема Харнака, Харнак же построил и пример максимальной кривой степени n.

Насколько я понимаю, эта задача Гильберта -- какие "картинки" могут реализовываться кривыми данной степени -- специалистами признается безнадежной. Для степени 8 максимальная кривая состоит из 22 овалов и осталось реализовать или доказать что невозможно реализовать 6 случаев. И за последние двадцать лет прогресса нет. А с большими степенями все совсем плохо.

Тем самым, следующая теорема Г.Михалкина выглядит совершенно удивительной.

Пусть есть максимальная кривая степени n. А кроме того на проективной плоскости заданы три прямые (не проходящие через одну точку) -- например "оси координат и бесконечноудаленная прямая". Кривая называется максимальной по отношению к этой тройке прямых, если у этой кривой есть компонента, на которой можно выбрать три непересекающиеся дуги, каждая из которых пересекает свою прямую в n точках. (рисунки в комментариях и статье Михалкина https://arxiv.org/pdf/math/0010018.pdf )

Теорема Михалкина говорит, что такая максимальная кривая, максимальная по отношению к трем прямым -- одна (с точностью до гомеоморфизма проективной плоскости). И это та кривая, которую нашел еще Харнак! Очень красивая -- и по формулировке и по доказательству теорема, ради таких теорем стоит изучать математику.

А в вещественной алгебраической геометрии много еще красивого.



group-telegram.com/cme_channel/3512
Create:
Last Update:

Первая часть шестнадцатой проблемы Гильберта содержит в себе вопрос о взаимном расположении овалов вещественной алгебраической кривой на вещественной проективной плоскости -- у нас все кривые вещественны сейчас. Если кривая задана однородным многочленом P(x,y,z)=0 и степень многочлена P равна n, то число ее компонент связности не больше 1/2(n-1)(n-2)+1. Это теорема Харнака, Харнак же построил и пример максимальной кривой степени n.

Насколько я понимаю, эта задача Гильберта -- какие "картинки" могут реализовываться кривыми данной степени -- специалистами признается безнадежной. Для степени 8 максимальная кривая состоит из 22 овалов и осталось реализовать или доказать что невозможно реализовать 6 случаев. И за последние двадцать лет прогресса нет. А с большими степенями все совсем плохо.

Тем самым, следующая теорема Г.Михалкина выглядит совершенно удивительной.

Пусть есть максимальная кривая степени n. А кроме того на проективной плоскости заданы три прямые (не проходящие через одну точку) -- например "оси координат и бесконечноудаленная прямая". Кривая называется максимальной по отношению к этой тройке прямых, если у этой кривой есть компонента, на которой можно выбрать три непересекающиеся дуги, каждая из которых пересекает свою прямую в n точках. (рисунки в комментариях и статье Михалкина https://arxiv.org/pdf/math/0010018.pdf )

Теорема Михалкина говорит, что такая максимальная кривая, максимальная по отношению к трем прямым -- одна (с точностью до гомеоморфизма проективной плоскости). И это та кривая, которую нашел еще Харнак! Очень красивая -- и по формулировке и по доказательству теорема, ради таких теорем стоит изучать математику.

А в вещественной алгебраической геометрии много еще красивого.

BY Непрерывное математическое образование


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/cme_channel/3512

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Some people used the platform to organize ahead of the storming of the U.S. Capitol in January 2021, and last month Senator Mark Warner sent a letter to Durov urging him to curb Russian information operations on Telegram. Ukrainian forces have since put up a strong resistance to the Russian troops amid the war that has left hundreds of Ukrainian civilians, including children, dead, according to the United Nations. Ukrainian and international officials have accused Russia of targeting civilian populations with shelling and bombardments. Perpetrators of such fraud use various marketing techniques to attract subscribers on their social media channels. Just days after Russia invaded Ukraine, Durov wrote that Telegram was "increasingly becoming a source of unverified information," and he worried about the app being used to "incite ethnic hatred." "There are a lot of things that Telegram could have been doing this whole time. And they know exactly what they are and they've chosen not to do them. That's why I don't trust them," she said.
from id


Telegram Непрерывное математическое образование
FROM American