Telegram Group & Telegram Channel
как делить числа?

пусть у нас есть числа a и b и мы хотим быстро посчитать a/b с большой точностью (а складывать-умножать числа мы уже умеем)

можно сдвинуть числитель и знаменатель на степень двойки, так что достаточно научиться находить 1/b для b между, скажем, 1/2 и 1

в этом посте нет экспериментальной математики, но так понравилась история, что не могу не поделиться — спасибо рассказавшему про это А.Гасникову (все ошибки, естественно, на моей совести)

1.

когда надо вычислить значение функции, у меня первый рефлекс — разложить ее в ряд Тейлора, т.е. в данном случае просто воспользоваться бесконечной геометрической прогрессией:

если b=1-q, то 1/b=1+q+q²+q³+… — сиди и вычисляй столько членов, сколько тебе нужно (так как |q|<1/2, рано или поздно всё получится)… но сколько нужно? чтобы найти N (двоичных) знаков после запятой нужно взять ~N членов, т.е. сделать ~N умножений, и это не очень вдохновляет

в конце концов, уравнение f(x)=0 для монотонной функции b всегда можно решать методом деления пополам (выбираем ту половину, на концах которой у f разные знаки, повторяем процесс) — уже это позволяет искать N знаков после запятой за ~N действий (для деления такой способ так же известен как деление в столбик)

но оказывается, что делить можно и намного быстрее, чем в столбик!

2.

если функция достаточно хорошая, то уравнение f(x)=0 можно быстро приближенно решать при помощи метода Ньютона

(
напомню идею: если x — приближенное значение корня, то рядом ним график функции недалеко ушел от касательной, поэтому в качестве следующего приближения можно взять пересечения касательной с нулем, т.е. x→x-f(x)/f'(x)

и в некоторой окрестности корня метод Ньютона, если производная в этом корне не равна 0, сходится очень быстро: за итерацию погрешность ~возводится в квадрат
)

на первый взгляд, нам метод Ньютона не поможет, так как в него входит деление — но тут происходит чудо: если сформулировать нашу задачу как задачу поиска нуля функции f(x)=1/x-b, то в методе Ньютона все деления сокращаются: f/f'=(1/x-b)⋅(-x²)=-x⋅(1-bx)

и получается рецепт x→x⋅(2-bx), который позволяет получить N знаков числа 1/b всего за ~log(N) операций (за каждую операцию количество верных знаков ~удваивается)

можно проверить, как это работает:

from mpmath import *
mp.dps = 300

b = mpf(57)/100
x = mpf(1)
print("1/"+nstr(b,30))
print(0,":",nstr(x,80))
for k in range(10):
x = x*(2-b*x)
print(k+1,":",nstr(x,80),
"diff:",nstr(abs(1/b-x),2,min_fixed=1))
print("T :",nstr(1/b,80))


3.

что это всё-таки за странная формула x→x(2-bx), можно ли это связать с чем-то более знакомым?

оказывается, это просто способ быстро вычислять частичные суммы всё той же геометрической прогрессии! действительно, если b = 1-q, и x = (1-q^N)/(1-q), то x’ = (1-q^N)/(1-q) ⋅ (1+q^N) = (1-q^{2N})/(1-q) — т.е. за шаг мы переходим от суммы первых N членов к сумме первых 2N членов геометрической прогрессии — немножко похоже на быстрое возведение в степень, только еще формулы сокращенного умножения знать надо

===

что можно ускорять какие-то базовые операции, меня впечатляет; вот небольшой текст про это в Мат. составляющей (в т.ч. про быстрое умножение): https://book.etudes.ru/articles/fast-arithmetic/

метод Ньютона здесь уже появлялся раньше, и будет, думаю, обсуждаться еще



group-telegram.com/compmathweekly/16
Create:
Last Update:

как делить числа?

пусть у нас есть числа a и b и мы хотим быстро посчитать a/b с большой точностью (а складывать-умножать числа мы уже умеем)

можно сдвинуть числитель и знаменатель на степень двойки, так что достаточно научиться находить 1/b для b между, скажем, 1/2 и 1

в этом посте нет экспериментальной математики, но так понравилась история, что не могу не поделиться — спасибо рассказавшему про это А.Гасникову (все ошибки, естественно, на моей совести)

1.

когда надо вычислить значение функции, у меня первый рефлекс — разложить ее в ряд Тейлора, т.е. в данном случае просто воспользоваться бесконечной геометрической прогрессией:

если b=1-q, то 1/b=1+q+q²+q³+… — сиди и вычисляй столько членов, сколько тебе нужно (так как |q|<1/2, рано или поздно всё получится)… но сколько нужно? чтобы найти N (двоичных) знаков после запятой нужно взять ~N членов, т.е. сделать ~N умножений, и это не очень вдохновляет

в конце концов, уравнение f(x)=0 для монотонной функции b всегда можно решать методом деления пополам (выбираем ту половину, на концах которой у f разные знаки, повторяем процесс) — уже это позволяет искать N знаков после запятой за ~N действий (для деления такой способ так же известен как деление в столбик)

но оказывается, что делить можно и намного быстрее, чем в столбик!

2.

если функция достаточно хорошая, то уравнение f(x)=0 можно быстро приближенно решать при помощи метода Ньютона

(
напомню идею: если x — приближенное значение корня, то рядом ним график функции недалеко ушел от касательной, поэтому в качестве следующего приближения можно взять пересечения касательной с нулем, т.е. x→x-f(x)/f'(x)

и в некоторой окрестности корня метод Ньютона, если производная в этом корне не равна 0, сходится очень быстро: за итерацию погрешность ~возводится в квадрат
)

на первый взгляд, нам метод Ньютона не поможет, так как в него входит деление — но тут происходит чудо: если сформулировать нашу задачу как задачу поиска нуля функции f(x)=1/x-b, то в методе Ньютона все деления сокращаются: f/f'=(1/x-b)⋅(-x²)=-x⋅(1-bx)

и получается рецепт x→x⋅(2-bx), который позволяет получить N знаков числа 1/b всего за ~log(N) операций (за каждую операцию количество верных знаков ~удваивается)

можно проверить, как это работает:


from mpmath import *
mp.dps = 300

b = mpf(57)/100
x = mpf(1)
print("1/"+nstr(b,30))
print(0,":",nstr(x,80))
for k in range(10):
x = x*(2-b*x)
print(k+1,":",nstr(x,80),
"diff:",nstr(abs(1/b-x),2,min_fixed=1))
print("T :",nstr(1/b,80))


3.

что это всё-таки за странная формула x→x(2-bx), можно ли это связать с чем-то более знакомым?

оказывается, это просто способ быстро вычислять частичные суммы всё той же геометрической прогрессии! действительно, если b = 1-q, и x = (1-q^N)/(1-q), то x’ = (1-q^N)/(1-q) ⋅ (1+q^N) = (1-q^{2N})/(1-q) — т.е. за шаг мы переходим от суммы первых N членов к сумме первых 2N членов геометрической прогрессии — немножко похоже на быстрое возведение в степень, только еще формулы сокращенного умножения знать надо

===

что можно ускорять какие-то базовые операции, меня впечатляет; вот небольшой текст про это в Мат. составляющей (в т.ч. про быстрое умножение): https://book.etudes.ru/articles/fast-arithmetic/

метод Ньютона здесь уже появлялся раньше, и будет, думаю, обсуждаться еще

BY Компьютерная математика Weekly


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/compmathweekly/16

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Pavel Durov, a billionaire who embraces an all-black wardrobe and is often compared to the character Neo from "the Matrix," funds Telegram through his personal wealth and debt financing. And despite being one of the world's most popular tech companies, Telegram reportedly has only about 30 employees who defer to Durov for most major decisions about the platform. Founder Pavel Durov says tech is meant to set you free Telegram boasts 500 million users, who share information individually and in groups in relative security. But Telegram's use as a one-way broadcast channel — which followers can join but not reply to — means content from inauthentic accounts can easily reach large, captive and eager audiences. Perpetrators of such fraud use various marketing techniques to attract subscribers on their social media channels. In view of this, the regulator has cautioned investors not to rely on such investment tips / advice received through social media platforms. It has also said investors should exercise utmost caution while taking investment decisions while dealing in the securities market.
from id


Telegram Компьютерная математика Weekly
FROM American