Telegram Group Search
Forwarded from Machinelearning
🔥 Microsoft только что выпустила Phi-4 LLM, обученный на 9,4 триллионах токенов.

Лицензия MIT!

🤗 HF: https://huggingface.co/microsoft/phi-4

🧠Demo: https://huggingface.co/spaces/Tonic/Phi-4

@ai_machinelearning_big_data

#phi4 #llm #Microsoft
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👀 Ollama-OCR

Пакет для Python и приложение Streamlit, использующие модели зрения Ollama для извлечения текста из изображений различных форматов, с поддержкой пакетной обработки.

pip install ollama-ocr

Github

@data_analysis_ml
📢 Релиз Moondream 2B

Новая vision модель для эйдж девайсов

Поддерживает структурированные выводы, улучшенное понимание текста, отслежтвание взгляда.



from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image

model = AutoModelForCausalLM.from_pretrained(
"vikhyatk/moondream2",
revision="2025-01-09",
trust_remote_code=True,
# Uncomment to run on GPU.
# device_map={"": "cuda"}
)

# Captioning
print("Short caption:")
print(model.caption(image, length="short")["caption"])

print("\nNormal caption:")
for t in model.caption(image, length="normal", stream=True)["caption"]:
# Streaming generation example, supported for caption() and detect()
print(t, end="", flush=True)
print(model.caption(image, length="normal"))

# Visual Querying
print("\nVisual query: 'How many people are in the image?'")
print(model.query(image, "How many people are in the image?")["answer"])

# Object Detection
print("\nObject detection: 'face'")
objects = model.detect(image, "face")["objects"]
print(f"Found {len(objects)} face(s)")

# Pointing
print("\nPointing: 'person'")
points = model.point(image, "person")["points"]
print(f"Found {len(points)} person(s)")


https://huggingface.co/vikhyatk/moondream2


HF: https://huggingface.co/vikhyatk/moondream2

Demo: https://moondream.ai/playground

Github: https://github.com/vikhyat/moondream

@data_analysis_ml
Только что был опубликован анализ выбросов CO₂ от 3000+ LLM на Open LLM Leaderboard! 🌱

В статье описана оценка энергопотребления, показаны тенденции и интригующие выводы 🙌

👉 Читать здесь: https://huggingface.co/blog/leaderboard-emissions-analysis
Программирование в 2025 году 🤓

@data_analysis_ml
⚡️ LLaVA-Mini: Efficient Image and Video Large Multimodal Models with One Vision Token

LLaVA-Mini достигает производительности LLaVA-v1.5 с 1 токеном (vs 576), сокращая количество FLOP на 77%, задержку со 100 мс до 40 мс и VRAM с 360 МБ до 0,6 МБ, обеспечивая 3-часовую обработку видео и 10 000 кадров на 24 ГБ GPU 🔥.

Установка:

conda create -n llavamini python=3.10 -y
conda activate llavamini
pip install -e .
pip install -e ".[train]"
pip install flash-attn --no-build-isolation


HF: https://huggingface.co/ICTNLP/llava-mini-llama-3.1-8b

Github: https://github.com/ictnlp/LLaVA-Mini

@data_analysis_ml
🔥 LeanUniverse - это пакет, предназначенный для создания датасетов из репозиториев Lean4 на Github.

Его цель - упростить и стандартизировать процесс создания обучающих наборов данных для моделей ИИ.

Ключевые особенности:

- Последовательность: LeanUniverse гарантирует, что все собранные репозитории согласованы и могут быть связаны с одной и той же версией зависимостей (mathlib). Это гарантирует надежность и совместимость датасетов, созданных с помощью этой библиотеки.
- Фильтрация лицензий: Пользователи имеют возможность определять фильтры допустимых лицензий,
- Кэширование: В библиотеку встроен механизм кэширования, повышающий эффективность за счет сокращения избыточных вычислений. Эта функция позволяет периодически обновлять и увеличивать датасеты.

git clone https://github.com/your-repo/LeanUniverse.git
cd LeanUniverse


Github
🔥 World Arcade — это платформа, которая позволяет запускать генеративные игры на вашем собственном GPU!

🌟 В отличие от традиционных игр, использующих детерминированные игровые движки, генеративные игры создают каждый кадр в реальном времени с помощью интерактивных видеомоделей, реагируя на действия игрока. World Arcade объединяет различные открытые игровые модели, такие как Yume Nikki, CS:GO, Minecraft, Atari Arcade Games и Mario Kart 64, предоставляя пользователям удобный способ их запуска и настройки.

💡 Платформа поддерживает работу на Windows и Linux, требуя наличия GPU NVIDIA с объемом видеопамяти не менее 8 ГБ. Для установки на Windows достаточно скачать архив dweam-windows.zip из последнего релиза, распаковать его и запустить исполняемый файл dweam.exe. На Linux установка осуществляется с использованием Docker и Docker Compose. World Arcade также предоставляет возможность добавления собственных игр путем создания Python-пакета с реализацией класса Game и предоставления метаданных в файле dweam.toml.

🔐 Лицензия: AGPL-3.0

🖥 Github

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
🎓 Введение в статистическую теорию машинного обучения

📌 Видео
📌 Урок 1 / Урок2 / Урок3 / Урок4 / Урок5 / Урок 6
📌 Colab
📌Полный курс

@data_math
📝 awesome-claude-prompts — это коллекция лучших промптов для использования с языковой моделью Claude!

🌟 В репозитории собраны примеры для самых разных задач, от анализа текста до написания кода, что делает его полезным для разработчиков, маркетологов, студентов и многих других пользователей.

🖥 Github

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥 Fast Semantic Text Deduplication

Новая, невероятно быстрая библиотека семантической дедупликации текста, которая объединяет эмбединг Model2Vec с поиском сходства, что позволяет дедуплицировать миллионы записей за считанные минуты. 👀

TL;DR:
🚀 Дедупликация 1,8 млн записей WikiText производит всего 83 секунды на CPU
💡 Используется семантическое сходство вместо точного соответствия для обнаружения дубликатов
🐍 Простой API Python и минимальные зависимости
🔧 Поддерживает пользовательские кодировщики, включая преобразователи предложений
🔎 Встроенные инструменты для проверки дубликатов и настройки порогов схожести
🧪 Проверено на 17 популярных наборах данных

pip install semhash


from datasets import load_dataset
from semhash import SemHash

# Load a dataset to deduplicate
texts = load_dataset("ag_news", split="train")["text"]

# Initialize a SemHash instance
semhash = SemHash.from_records(records=texts)

# Deduplicate the texts
deduplicated_texts = semhash.self_deduplicate().deduplicated


GitHub
QuickStart

@data_analysis_ml
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 Mistral выпустила новую модель, специально разработанную для по Кодина с ИИ.

Codestral 25.01 дебютирует на 1-м месте в рейтинге лидеров LMsys Copilot Arena 🔥

Новая версия стала заметно умнее и в разы быстрее благодаря обновлённому токенизатору и усовершенствованной архитектуре.
Вы уже можете использовать его бесплатно в Continue (100% открытый исходный код) для VS Code.

Размер окна контекста увеличен до 256 тысяч токенов.

Чтобы использовать его, просто добавьте плагин Continue в VS Code и выберите Codestral 25.01 в качестве модели.

А если вам нужна дополнительная информация, то вот официальный блог Mistral.

https://mistral.ai/news/codestral-2501/

@data_analysis_ml

#mistral #llm #ml
💡Transformer^2: Самоадаптирующиеся LLM

Вводит новую структуру самоадаптации, которая адаптирует LLM для невидимых задач в реальном времени, выборочно корректируя только отдельные компоненты их весовых матриц.

Во время вывода использует систему диспетчеризации, которая определяет свойства задачи, а затем использует векторы «экспертов» для конкретной задачи, обученные с помощью reinforcement learning👀

https://huggingface.co/papers/2501.06252

@data_analysis_ml

#transformers2 #llm #paper #ml
Станьте ML-Инженером за 8 месяцев.

Основная проблема обучений – оторванность от задач реального бизнеса. На курсе учили строить простые модельки, а на работе – сделать по шаблону недостаточно, нужно сразу связать это с бизнесом.

Курс-симулятор от Simulative построен таким образом, что вы сразу погружаетесь в настоящую работу: работаете над 10+ проектами из реального бизнеса, учитесь не только писать код, но и понимать, что у алгоритмов «под капотом»

Вы изучите математику, Python, научитесь обучать ML-модели, нейронные сети и создавать рекомендательные системы. А также подготовитесь к любому собеседованию – в курс включены тестовые задания, пробные интервью (технические и с HR) и многое другое.

С трудоустройством тоже помогут: 87% студентов находят работу своей мечты в течение двух месяцев с момента начала поиска.

А на VIP тарифе преподаватели и HR спроектируют вам персональный трек обучения и за руку доведут до оффера. Часть стоимости курса вы оплачиваете только, когда найдёте работу.

Успейте присоединиться к первому потоку обучения с самой большой скидкой 17%
🔥 Web-UI — это инструмент для работы с AI-агентами в браузере, предоставляющий удобный пользовательский интерфейс, построенный на основе Gradio!

🌟 Он позволяет пользователям запускать и управлять задачами с помощью различных больших языковых моделей (LLMs), таких как OpenAI, Azure OpenAI, Anthropic и другие. Этот проект поддерживает настройку собственного браузера для работы с инструментом, сохраняя сессии и позволяя видеть историю взаимодействий с AI.

💡 Web-UI поддерживает как локальную установку с использованием Python и Playwright, так и установку через Docker. Пользователи могут запускать интерфейс, чтобы наблюдать за действиями AI-агента в реальном времени, включая управление сессиями браузера и использование API для интеграции с LLM.

🔐 Лицензия: MIT

🖥 Github

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Приглашаем вас на открытый вебинар: «Технологии за современными LLM»
https://otus.pw/IWFL/

Дата: 20 января в 18:00 мск
Спикер: Мария Тихонова

📚На занятии мы обсудим:
+ Какие современные LLM сегодня используют на практике.
+ Основные концепции языкового моделирования и продвинутые языковые модели.
+ Методы и технологии, благодаря которым создатели ChatGPT совершили прорыв.
+ Что представляет из себя задача языкового моделирования
+ Языковые модели, которые сегодня лежат в основе всех NLP методов

🔥Результаты урока:
- Вы поймете, где применяются методы NLP
- Узнаете основные тренды и перспективы развития методов NLP
- Узнаете современное состояние области в связи с быстрым развитием LLM

Участники открытых уроков получат скидку🎁 на онлайн-курс «NLP / Natural Language Processing»

👉Регистрируйтесь на открытый вебинар по ссылке: https://otus.pw/IWFL/?erid=2W5zFHJGL9W
Реклама. ООО «Отус онлайн-образование», ОГРН 1177746618576

#реклама
О рекламодателе
🎓 Qwen2.5-Math-PRM-7B и Qwen2.5-Math-PRM-72B. PRM

В дополнение к математической модели вознаграждения за результат (ORM) Qwen2.5-Math-RM-72B, Qwen выпустили модели вознаграждения за процесс (PRM),

Они представляют собой новый подход к наблюдению за процессами в математических рассуждениях больших языковых моделей (LLM), направленный на выявление и устранение промежуточных ошибок в процессах рассуждений.

PRM демонстрируют впечатляющую производительность в оценке Best-of-N (BoN), так и более высокую эффективность нахождения ошибок в ProcessBench.

А вот интересная цитата из технического отчета:
"Мы разрабатываем механизм консенсусной фильтрации, который эффективно объединяет оценку МК с LLM-как-оценку, и выступаем за более комплексную систему оценки, которая объединяет метрики уровня ответа и уровня шага"

» https://huggingface.co/papers/2501.07301
2025/01/15 02:11:17
Back to Top
HTML Embed Code: