Telegram Group & Telegram Channel
Sapiens: A Family of Human-Centric Vision Models #pose_estimation #depth_estimation #paper

Статья (август 2024, ECCV 2024) от Meta представляет семейство моделей Sapiens для четырех основных задач компьютерного зрения, связанных с анализом людей: оценка позы человека (2D pose estimation), сегментация частей тела (body-part segmentation), оценка глубины (depth estimation) и предсказание нормалей поверхности (surface normal prediction).

В основе архитектуры лежит Vision Transformer, предобученный на специально собранном датасете Humans-300M, содержащем 300 миллионов изображений людей. Семейство включает четыре модели разного размера: от Sapiens-0.3B (336M параметров, 1.242T FLOPS) до Sapiens-2B (2.163B параметров, 8.709T FLOPS). Предобучение выполняется с помощью подхода masked autoencoder (MAE) на изображениях размером 1024x1024 с размером патча 16x16, при этом маскируется 75-95% патчей.

Для каждой из задач авторы используют специфичную архитектуру декодера. В задаче pose estimation применяется top-down подход, где сначала выполняется детекция человека, а затем оценка позы через предсказание heatmap с использованием Mean Squared Error loss. Модель работает с расширенным набором из 308 ключевых точек, включая 243 точки для лица и 40 для рук, на изображениях с аспектом 4:3 (1024x768). В задаче сегментации модель работает с 28 классами частей тела, используя Weighted Cross Entropy loss и легкий декодер с deconvolution слоями. Для depth estimation используется единый канал на выходе для регрессии с нормализацией глубины в диапазон [0,1] и специальным loss с учетом логарифмической разницы. В задаче normal estimation модель предсказывает xyz компоненты нормали через 3 выходных канала, используя комбинацию L1 loss и косинусной близости между предсказанными и ground truth нормалями.

Предобучение заняло 18 дней на 1024 GPU A100, а результаты превзошли SOTA во всех задачах: в pose estimation на 7.6 AP, в сегментации на 17.1 mIoU, в depth estimation на 22.4% RMSE и в normal estimation на 53.5%.

Ключевой вывод работы заключается в том, что специализированное предобучение на человеческих данных и использование высокого разрешения дают значительный прирост качества даже при использовании относительно простой архитектуры encoder-decoder. При этом модели демонстрируют хорошее обобщение на "дикие" данные, несмотря на обучение преимущественно на студийных и синтетических датасетах.

🔥Project
💻Github
📜Paper

@gentech_lab
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/gentech_lab/83
Create:
Last Update:

Sapiens: A Family of Human-Centric Vision Models #pose_estimation #depth_estimation #paper

Статья (август 2024, ECCV 2024) от Meta представляет семейство моделей Sapiens для четырех основных задач компьютерного зрения, связанных с анализом людей: оценка позы человека (2D pose estimation), сегментация частей тела (body-part segmentation), оценка глубины (depth estimation) и предсказание нормалей поверхности (surface normal prediction).

В основе архитектуры лежит Vision Transformer, предобученный на специально собранном датасете Humans-300M, содержащем 300 миллионов изображений людей. Семейство включает четыре модели разного размера: от Sapiens-0.3B (336M параметров, 1.242T FLOPS) до Sapiens-2B (2.163B параметров, 8.709T FLOPS). Предобучение выполняется с помощью подхода masked autoencoder (MAE) на изображениях размером 1024x1024 с размером патча 16x16, при этом маскируется 75-95% патчей.

Для каждой из задач авторы используют специфичную архитектуру декодера. В задаче pose estimation применяется top-down подход, где сначала выполняется детекция человека, а затем оценка позы через предсказание heatmap с использованием Mean Squared Error loss. Модель работает с расширенным набором из 308 ключевых точек, включая 243 точки для лица и 40 для рук, на изображениях с аспектом 4:3 (1024x768). В задаче сегментации модель работает с 28 классами частей тела, используя Weighted Cross Entropy loss и легкий декодер с deconvolution слоями. Для depth estimation используется единый канал на выходе для регрессии с нормализацией глубины в диапазон [0,1] и специальным loss с учетом логарифмической разницы. В задаче normal estimation модель предсказывает xyz компоненты нормали через 3 выходных канала, используя комбинацию L1 loss и косинусной близости между предсказанными и ground truth нормалями.

Предобучение заняло 18 дней на 1024 GPU A100, а результаты превзошли SOTA во всех задачах: в pose estimation на 7.6 AP, в сегментации на 17.1 mIoU, в depth estimation на 22.4% RMSE и в normal estimation на 53.5%.

Ключевой вывод работы заключается в том, что специализированное предобучение на человеческих данных и использование высокого разрешения дают значительный прирост качества даже при использовании относительно простой архитектуры encoder-decoder. При этом модели демонстрируют хорошее обобщение на "дикие" данные, несмотря на обучение преимущественно на студийных и синтетических датасетах.

🔥Project
💻Github
📜Paper

@gentech_lab

BY Gentech Lab




Share with your friend now:
group-telegram.com/gentech_lab/83

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The S&P 500 fell 1.3% to 4,204.36, and the Dow Jones Industrial Average was down 0.7% to 32,943.33. The Dow posted a fifth straight weekly loss — its longest losing streak since 2019. The Nasdaq Composite tumbled 2.2% to 12,843.81. Though all three indexes opened in the green, stocks took a turn after a new report showed U.S. consumer sentiment deteriorated more than expected in early March as consumers' inflation expectations soared to the highest since 1981. "And that set off kind of a battle royale for control of the platform that Durov eventually lost," said Nathalie Maréchal of the Washington advocacy group Ranking Digital Rights. Pavel Durov, Telegram's CEO, is known as "the Russian Mark Zuckerberg," for co-founding VKontakte, which is Russian for "in touch," a Facebook imitator that became the country's most popular social networking site. Telegram Messenger Blocks Navalny Bot During Russian Election "We as Ukrainians believe that the truth is on our side, whether it's truth that you're proclaiming about the war and everything else, why would you want to hide it?," he said.
from id


Telegram Gentech Lab
FROM American