Notice: file_put_contents(): Write of 3313 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50

Warning: file_put_contents(): Only 8192 of 11505 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50
gonzo-обзоры ML статей | Telegram Webview: gonzo_ML/21 -
Telegram Group & Telegram Channel
The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks
Jonathan Frankle, Michael Carbin
CSAIL MIT

Статья: https://arxiv.org/abs/1803.03635

#CNN, #FFNN, #optimization, #pruning, #ICLR 2019

Статья немного про природу вещей. Рассматривают dense feed-forward neural networks, полносвязные и/или CNN. Известно, что методы network pruning позволяют эффективно ужать уже обученную сеть -- выкинуть заметную часть параметров (связей) без потерь качества (в ряде случаев удаётся снизить объём на 90%). Известно, кроме того, что сразу научить такую уменьшенную сеть до того же качества не выходит.

Авторы выдвигают гипотезу "лотерейного билета": любая случайно инициализированная плотная сеть, обучаемая на заданный таргет, содержит некоторую подсеть, которая, будучи обученной на тот же таргет, даст качество не хуже за то же или меньшее число итераций обучения. В целом, это утверждение имеет как минимум тривиальное подтверждение, но авторы утверждают, что это эффективная подсеть обычно существенно меньше основной. Такие эффективные подсети называют "winning tickets".

Интуиция тут такая: Начиная обучать случайно инициализированную сеть, оптимизатор просто ищет уже готовый подходящий канал внутри случайной сети, а дальше уже именно этот путь оптимизируется, а остальная сеть не очень то и нужна. В плотной сети число возможных путей от входа к выходу растёт с числом нейронов существенно надлинейно. Поэтому, чем больше сеть взять в начале, тем больше шансов сразу получить подходящий подграф.

Проводят серию экспериментов для подтверждения этой гипотезы:
1) Возьмём большую случайно инициализированную сеть Х, сохраним её копию С.
2) Обучим Х, применим к ней pruning, получим редуцированную обученную сеть У (размером 10-20% от Х).
3) Вернёмся к сохранённой копии С, редуцируем её до тех же параметров, что остались в У, но веса оставим случайными (из С) -- это будет сеть Z.
4) Обучим Z и сравним сходимость с Х. Качество должно получиться не хуже, а сходимость -- не медленнее.
5) Затем вернёмся к Z и вновь переинициализируем её случайным образом, пусть это будет сеть R. Опять сравним с X и Z. Если гипотеза верна, всё должно ухудшиться.
6) Ещё можно сравниться со случайным подграфом Х того же размера что Z.

В целом, результаты экспериментов скорее подтверждают гипотезу, по крайней мере для простых топологий. Дальше в статье идёт разбор таких экспериментов для некоторого числа разных задач, топологий и методов оптимизации.

Общие выводы:
- текущая схема обучения сетей не очень эффективна, есть куда улучшаться, например, в сторону более эффективной начальной инициализации (но не очень понятно как),
- можно попробовать определять winning tickets на ранних стадиях обучения большой сети и делать ранний pruning к ним -- это может повысить эффективность обучения на практике.



group-telegram.com/gonzo_ML/21
Create:
Last Update:

The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks
Jonathan Frankle, Michael Carbin
CSAIL MIT

Статья: https://arxiv.org/abs/1803.03635

#CNN, #FFNN, #optimization, #pruning, #ICLR 2019

Статья немного про природу вещей. Рассматривают dense feed-forward neural networks, полносвязные и/или CNN. Известно, что методы network pruning позволяют эффективно ужать уже обученную сеть -- выкинуть заметную часть параметров (связей) без потерь качества (в ряде случаев удаётся снизить объём на 90%). Известно, кроме того, что сразу научить такую уменьшенную сеть до того же качества не выходит.

Авторы выдвигают гипотезу "лотерейного билета": любая случайно инициализированная плотная сеть, обучаемая на заданный таргет, содержит некоторую подсеть, которая, будучи обученной на тот же таргет, даст качество не хуже за то же или меньшее число итераций обучения. В целом, это утверждение имеет как минимум тривиальное подтверждение, но авторы утверждают, что это эффективная подсеть обычно существенно меньше основной. Такие эффективные подсети называют "winning tickets".

Интуиция тут такая: Начиная обучать случайно инициализированную сеть, оптимизатор просто ищет уже готовый подходящий канал внутри случайной сети, а дальше уже именно этот путь оптимизируется, а остальная сеть не очень то и нужна. В плотной сети число возможных путей от входа к выходу растёт с числом нейронов существенно надлинейно. Поэтому, чем больше сеть взять в начале, тем больше шансов сразу получить подходящий подграф.

Проводят серию экспериментов для подтверждения этой гипотезы:
1) Возьмём большую случайно инициализированную сеть Х, сохраним её копию С.
2) Обучим Х, применим к ней pruning, получим редуцированную обученную сеть У (размером 10-20% от Х).
3) Вернёмся к сохранённой копии С, редуцируем её до тех же параметров, что остались в У, но веса оставим случайными (из С) -- это будет сеть Z.
4) Обучим Z и сравним сходимость с Х. Качество должно получиться не хуже, а сходимость -- не медленнее.
5) Затем вернёмся к Z и вновь переинициализируем её случайным образом, пусть это будет сеть R. Опять сравним с X и Z. Если гипотеза верна, всё должно ухудшиться.
6) Ещё можно сравниться со случайным подграфом Х того же размера что Z.

В целом, результаты экспериментов скорее подтверждают гипотезу, по крайней мере для простых топологий. Дальше в статье идёт разбор таких экспериментов для некоторого числа разных задач, топологий и методов оптимизации.

Общие выводы:
- текущая схема обучения сетей не очень эффективна, есть куда улучшаться, например, в сторону более эффективной начальной инициализации (но не очень понятно как),
- можно попробовать определять winning tickets на ранних стадиях обучения большой сети и делать ранний pruning к ним -- это может повысить эффективность обучения на практике.

BY gonzo-обзоры ML статей


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/gonzo_ML/21

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Groups are also not fully encrypted, end-to-end. This includes private groups. Private groups cannot be seen by other Telegram users, but Telegram itself can see the groups and all of the communications that you have in them. All of the same risks and warnings about channels can be applied to groups. This ability to mix the public and the private, as well as the ability to use bots to engage with users has proved to be problematic. In early 2021, a database selling phone numbers pulled from Facebook was selling numbers for $20 per lookup. Similarly, security researchers found a network of deepfake bots on the platform that were generating images of people submitted by users to create non-consensual imagery, some of which involved children. However, the perpetrators of such frauds are now adopting new methods and technologies to defraud the investors. The perpetrators use various names to carry out the investment scams. They may also impersonate or clone licensed capital market intermediaries by using the names, logos, credentials, websites and other details of the legitimate entities to promote the illegal schemes. Some people used the platform to organize ahead of the storming of the U.S. Capitol in January 2021, and last month Senator Mark Warner sent a letter to Durov urging him to curb Russian information operations on Telegram.
from id


Telegram gonzo-обзоры ML статей
FROM American