Notice: file_put_contents(): Write of 6630 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50

Warning: file_put_contents(): Only 8192 of 14822 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50
gonzo-обзоры ML статей | Telegram Webview: gonzo_ML/3046 -
Telegram Group & Telegram Channel
The Super Weight in Large Language Models
Mengxia Yu, De Wang, Qi Shan, Colorado Reed, Alvin Wan
Статья: https://arxiv.org/abs/2411.07191
Код: https://github.com/mengxiayu/LLMSuperWeight

Очень прикольная работа про то, что внутри LLM можно найти один единственный вес, зануляя который мы обрушиваем качество работы модели в пропасть. Такие параметры авторы называют супер весами (super weights) и предлагают метод их нахождения за один forward pass.

Внутри обученных LLM находится группа весов-аутлаеров с большой магнитудой, они могут составлять порядка 0.01% от всех весов модели, что в случае миллиардных моделей всё равно сотни тысяч. Это было известно ранее. В текущей работе показывают, что внутри этой группы находится один единственный вес (тот самый super weight, SW), не обязательно самый большой, важность которого превышает суммарную важность тысяч других аутлаеров. Он необходим для качества, без него LLM не может генерить нормальный текст. Перплексия вырастает на несколько порядков, а точность на zero-shot задачах падает до рандома.

Ранее (https://arxiv.org/abs/2402.17762) были найдены супер-активации, критичные для качества. Они существуют в различных слоях, имеют константную магнитуду и всегда обнаруживаются в одинаковой позиции несмотря на вход. Текущая работа находит, что канал активации совпадает с оным для супер веса и сперва активация обнаруживается сразу после супер веса. Прунинг этого супер веса значительно уменьшает активацию, так что вероятно активация вызвана им, а не просто скоррелирована. Такие активации называются супер активациями (super activations, SA).

Предыдущая работа объясняла супер активации через bias terms, но не объясняла как они получаются и почему на одних и тех же местах. Сейчас авторы эмпирически нашли, что до down проекции (down_proj) произведение Адамара (Hadamard product) gate и up проекций (gate_proj, up_proj) создаёт относительно большую активацию. Супер вес далее усиливает её ещё и даёт супер активацию.

Напомню, что MLP блок в Ламе выглядит так:

out = down_proj( act_fn(gate_proj(input)) x up_proj(input) )

SW можно найти, анализируя спайки в распределениях входов и выходов down_proj. Для этого достаточен прямой проход с одним промптом. Авторы нашли супер веса для Llama (7B,13B,30B), Llama 2 (7B,13B), Mistral-7B, OLMo (1B,7B), Phi-3.

Провели эксперименты по обнулению SW, в том числе с восстановлением SA до исходного значения, чтобы проверить влияние SW на другие активации. Это восстанавливает 42% потери, то есть влияние SW на качество выше, чем просто через SA.

По анализу 500 различных промптов из Lambaba validation set видно, что при убирании SW вероятности стоп-слов сильно возрастают (а обычные слова соответственно занижаются). Для “the” это 2×, для “.” -- 5×, и для “,” -- 10×. То есть наличие SW как бы подавляет стоп-слова и позволяет генерировать осмысленный текст.

Другой интересный эксперимент скейлит супер веса с коэффициентами от 0 до 3 (где оригинальный режим работы соответствует значению 1) и оказывается, что при увеличении SW качество модели ещё немного возрастает. Это забавный результат.

Имея это знание, можно предложить специальный метод квантования: Super-outlier aware quantization. Стандартные механизмы квантизации могут быть недостаточно хорошими, так как аутлаеры искажают распределение, влияя на размер шага и увеличивая ошибки квантования. Здесь под super outliers подразумеваются и SW, и SA. Предложенные методы восстанавливают SW и SA после квантований с клиппингом и заменами на медианное значение. Это всё работает лучше дефолтных методов, главный вывод -- надо защищать супер веса. В статье есть подробный разбор экспериментов, кому интересно поглубже. Также новый метод меньше теряет в качестве с увеличением размера блока.

Прикольный результат в общем. Это всё несколько перекликается с темой про лотерейные билеты (https://www.group-telegram.com/id/gonzo_ML.com/21), там внутри большой сети обнаруживалась сильно разреженная подсеть, обучая которую можно было достигать качества исходной сети (или даже выше). Интересно, входят ли супер-веса в лотерейный билет? Наверняка.



group-telegram.com/gonzo_ML/3046
Create:
Last Update:

The Super Weight in Large Language Models
Mengxia Yu, De Wang, Qi Shan, Colorado Reed, Alvin Wan
Статья: https://arxiv.org/abs/2411.07191
Код: https://github.com/mengxiayu/LLMSuperWeight

Очень прикольная работа про то, что внутри LLM можно найти один единственный вес, зануляя который мы обрушиваем качество работы модели в пропасть. Такие параметры авторы называют супер весами (super weights) и предлагают метод их нахождения за один forward pass.

Внутри обученных LLM находится группа весов-аутлаеров с большой магнитудой, они могут составлять порядка 0.01% от всех весов модели, что в случае миллиардных моделей всё равно сотни тысяч. Это было известно ранее. В текущей работе показывают, что внутри этой группы находится один единственный вес (тот самый super weight, SW), не обязательно самый большой, важность которого превышает суммарную важность тысяч других аутлаеров. Он необходим для качества, без него LLM не может генерить нормальный текст. Перплексия вырастает на несколько порядков, а точность на zero-shot задачах падает до рандома.

Ранее (https://arxiv.org/abs/2402.17762) были найдены супер-активации, критичные для качества. Они существуют в различных слоях, имеют константную магнитуду и всегда обнаруживаются в одинаковой позиции несмотря на вход. Текущая работа находит, что канал активации совпадает с оным для супер веса и сперва активация обнаруживается сразу после супер веса. Прунинг этого супер веса значительно уменьшает активацию, так что вероятно активация вызвана им, а не просто скоррелирована. Такие активации называются супер активациями (super activations, SA).

Предыдущая работа объясняла супер активации через bias terms, но не объясняла как они получаются и почему на одних и тех же местах. Сейчас авторы эмпирически нашли, что до down проекции (down_proj) произведение Адамара (Hadamard product) gate и up проекций (gate_proj, up_proj) создаёт относительно большую активацию. Супер вес далее усиливает её ещё и даёт супер активацию.

Напомню, что MLP блок в Ламе выглядит так:

out = down_proj( act_fn(gate_proj(input)) x up_proj(input) )

SW можно найти, анализируя спайки в распределениях входов и выходов down_proj. Для этого достаточен прямой проход с одним промптом. Авторы нашли супер веса для Llama (7B,13B,30B), Llama 2 (7B,13B), Mistral-7B, OLMo (1B,7B), Phi-3.

Провели эксперименты по обнулению SW, в том числе с восстановлением SA до исходного значения, чтобы проверить влияние SW на другие активации. Это восстанавливает 42% потери, то есть влияние SW на качество выше, чем просто через SA.

По анализу 500 различных промптов из Lambaba validation set видно, что при убирании SW вероятности стоп-слов сильно возрастают (а обычные слова соответственно занижаются). Для “the” это 2×, для “.” -- 5×, и для “,” -- 10×. То есть наличие SW как бы подавляет стоп-слова и позволяет генерировать осмысленный текст.

Другой интересный эксперимент скейлит супер веса с коэффициентами от 0 до 3 (где оригинальный режим работы соответствует значению 1) и оказывается, что при увеличении SW качество модели ещё немного возрастает. Это забавный результат.

Имея это знание, можно предложить специальный метод квантования: Super-outlier aware quantization. Стандартные механизмы квантизации могут быть недостаточно хорошими, так как аутлаеры искажают распределение, влияя на размер шага и увеличивая ошибки квантования. Здесь под super outliers подразумеваются и SW, и SA. Предложенные методы восстанавливают SW и SA после квантований с клиппингом и заменами на медианное значение. Это всё работает лучше дефолтных методов, главный вывод -- надо защищать супер веса. В статье есть подробный разбор экспериментов, кому интересно поглубже. Также новый метод меньше теряет в качестве с увеличением размера блока.

Прикольный результат в общем. Это всё несколько перекликается с темой про лотерейные билеты (https://www.group-telegram.com/id/gonzo_ML.com/21), там внутри большой сети обнаруживалась сильно разреженная подсеть, обучая которую можно было достигать качества исходной сети (или даже выше). Интересно, входят ли супер-веса в лотерейный билет? Наверняка.

BY gonzo-обзоры ML статей




Share with your friend now:
group-telegram.com/gonzo_ML/3046

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

At the start of 2018, the company attempted to launch an Initial Coin Offering (ICO) which would enable it to enable payments (and earn the cash that comes from doing so). The initial signals were promising, especially given Telegram’s user base is already fairly crypto-savvy. It raised an initial tranche of cash – worth more than a billion dollars – to help develop the coin before opening sales to the public. Unfortunately, third-party sales of coins bought in those initial fundraising rounds raised the ire of the SEC, which brought the hammer down on the whole operation. In 2020, officials ordered Telegram to pay a fine of $18.5 million and hand back much of the cash that it had raised. So, uh, whenever I hear about Telegram, it’s always in relation to something bad. What gives? "He has kind of an old-school cyber-libertarian world view where technology is there to set you free," Maréchal said. On Telegram’s website, it says that Pavel Durov “supports Telegram financially and ideologically while Nikolai (Duvov)’s input is technological.” Currently, the Telegram team is based in Dubai, having moved around from Berlin, London and Singapore after departing Russia. Meanwhile, the company which owns Telegram is registered in the British Virgin Islands. Additionally, investors are often instructed to deposit monies into personal bank accounts of individuals who claim to represent a legitimate entity, and/or into an unrelated corporate account. To lend credence and to lure unsuspecting victims, perpetrators usually claim that their entity and/or the investment schemes are approved by financial authorities.
from id


Telegram gonzo-обзоры ML статей
FROM American