Telegram Group & Telegram Channel
Forwarded from Chimica Techno Acta (Dimitry)
Самые влиятельные статьи в области химии и материаловедения за последние 2 года:

🫥Li-ion batteries
1️⃣ Electrolyte design for Li-ion batteries under extreme operating conditions, https://doi.org/10.1038/s41586-022-05627-8
2️⃣ High-Energy Lithium-Ion Batteries: Recent Progress and a Promising Future in Applications, https://doi.org/10.1002/eem2.12450
3️⃣ Lithiated metallic molybdenum disulfide nanosheets for high-performance lithium–sulfur batteries, https://doi.org/10.1038/s41560-022-01175-7

🫥Electrocatalysis
1️⃣ Non-iridium-based electrocatalyst for durable acidic oxygen evolution reaction in proton exchange membrane water electrolysis, https://doi.org/10.1038/s41563-022-01380-5
2️⃣ Tandem Electrocatalytic Nitrate Reduction to Ammonia on MBenes, https://doi.org/10.1002/anie.202300054
3️⃣ A high-entropy atomic environment converts inactive to active sites for electrocatalysis, https://doi.org/10.1039/D2EE03185J

🫥MOF|COF
1️⃣ Metal-Organic Frameworks for Photocatalytic Water Splitting and CO2 Reduction, https://doi.org/10.1002/anie.202217565
2️⃣ Tuning excited state electronic structure and charge transport in covalent organic frameworks for enhanced photocatalytic performance, https://doi.org/10.1038/s41467-023-36710-x
3️⃣ Covalent organic frameworks, https://doi.org/10.1038/s43586-022-00181-z

🫥Mxene
1️⃣ Direct synthesis and chemical vapor deposition of 2D carbide and nitride MXenes, https://doi.org/10.1126/science.add9204
2️⃣ Ultrathin Cellulose Nanofiber Assisted Ambient-Pressure-Dried, Ultralight, Mechanically Robust, Multifunctional MXene Aerogels, https://doi.org/10.1002/adma.202207969
3️⃣ Nanocellulose-Assisted Construction of Multifunctional MXene-Based Aerogels with Engineering Biomimetic Texture for Pressure Sensor and Compressible Electrode, https://doi.org/10.1007/s40820-023-01073-x

🫥Solar cells
1️⃣ Controlled growth of perovskite layers with volatile alkylammonium chlorides, https://doi.org/10.1038/s41586-023-05825-y
2️⃣ Minimizing buried interfacial defects for efficient inverted perovskite solar cells, https://doi.org/10.1126/science.adg3755
3️⃣ 19.31% binary organic solar cell and low non-radiative recombination enabled by non-monotonic intermediate state transition, https://doi.org/10.1038/s41467-023-37526-5

🫥Hydrogels
1️⃣ Self-Healing Injectable Hydrogels for Tissue Regeneration, https://doi.org/10.1021/acs.chemrev.2c00179
2️⃣ Hydrogel-Based Flexible Electronics, https://doi.org/10.1002/adma.202205326
3️⃣ Wound microenvironment self-adaptive hydrogel with efficient angiogenesis for promoting diabetic wound healing, https://doi.org/10.1016/j.bioactmat.2022.06.018

🫥Graphene
1️⃣ Raman spectroscopy of carbon materials and their composites: Graphene, nanotubes and fibres, https://doi.org/10.1016/j.pmatsci.2023.101089
2️⃣ Construction of three-dimensional hierarchical porous nitrogen-doped reduced graphene oxide/hollow cobalt ferrite composite aerogels toward highly efficient electromagnetic wave absorption, https://doi.org/10.1016/j.jmst.2022.05.050
3️⃣ Graphene oxide for photonics, electronics and optoelectronics, https://doi.org/10.1038/s41570-022-00458-7
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/isc_ras/1373
Create:
Last Update:

Самые влиятельные статьи в области химии и материаловедения за последние 2 года:

🫥Li-ion batteries
1️⃣ Electrolyte design for Li-ion batteries under extreme operating conditions, https://doi.org/10.1038/s41586-022-05627-8
2️⃣ High-Energy Lithium-Ion Batteries: Recent Progress and a Promising Future in Applications, https://doi.org/10.1002/eem2.12450
3️⃣ Lithiated metallic molybdenum disulfide nanosheets for high-performance lithium–sulfur batteries, https://doi.org/10.1038/s41560-022-01175-7

🫥Electrocatalysis
1️⃣ Non-iridium-based electrocatalyst for durable acidic oxygen evolution reaction in proton exchange membrane water electrolysis, https://doi.org/10.1038/s41563-022-01380-5
2️⃣ Tandem Electrocatalytic Nitrate Reduction to Ammonia on MBenes, https://doi.org/10.1002/anie.202300054
3️⃣ A high-entropy atomic environment converts inactive to active sites for electrocatalysis, https://doi.org/10.1039/D2EE03185J

🫥MOF|COF
1️⃣ Metal-Organic Frameworks for Photocatalytic Water Splitting and CO2 Reduction, https://doi.org/10.1002/anie.202217565
2️⃣ Tuning excited state electronic structure and charge transport in covalent organic frameworks for enhanced photocatalytic performance, https://doi.org/10.1038/s41467-023-36710-x
3️⃣ Covalent organic frameworks, https://doi.org/10.1038/s43586-022-00181-z

🫥Mxene
1️⃣ Direct synthesis and chemical vapor deposition of 2D carbide and nitride MXenes, https://doi.org/10.1126/science.add9204
2️⃣ Ultrathin Cellulose Nanofiber Assisted Ambient-Pressure-Dried, Ultralight, Mechanically Robust, Multifunctional MXene Aerogels, https://doi.org/10.1002/adma.202207969
3️⃣ Nanocellulose-Assisted Construction of Multifunctional MXene-Based Aerogels with Engineering Biomimetic Texture for Pressure Sensor and Compressible Electrode, https://doi.org/10.1007/s40820-023-01073-x

🫥Solar cells
1️⃣ Controlled growth of perovskite layers with volatile alkylammonium chlorides, https://doi.org/10.1038/s41586-023-05825-y
2️⃣ Minimizing buried interfacial defects for efficient inverted perovskite solar cells, https://doi.org/10.1126/science.adg3755
3️⃣ 19.31% binary organic solar cell and low non-radiative recombination enabled by non-monotonic intermediate state transition, https://doi.org/10.1038/s41467-023-37526-5

🫥Hydrogels
1️⃣ Self-Healing Injectable Hydrogels for Tissue Regeneration, https://doi.org/10.1021/acs.chemrev.2c00179
2️⃣ Hydrogel-Based Flexible Electronics, https://doi.org/10.1002/adma.202205326
3️⃣ Wound microenvironment self-adaptive hydrogel with efficient angiogenesis for promoting diabetic wound healing, https://doi.org/10.1016/j.bioactmat.2022.06.018

🫥Graphene
1️⃣ Raman spectroscopy of carbon materials and their composites: Graphene, nanotubes and fibres, https://doi.org/10.1016/j.pmatsci.2023.101089
2️⃣ Construction of three-dimensional hierarchical porous nitrogen-doped reduced graphene oxide/hollow cobalt ferrite composite aerogels toward highly efficient electromagnetic wave absorption, https://doi.org/10.1016/j.jmst.2022.05.050
3️⃣ Graphene oxide for photonics, electronics and optoelectronics, https://doi.org/10.1038/s41570-022-00458-7

BY ИХР РАН / ISC RAS




Share with your friend now:
group-telegram.com/isc_ras/1373

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

"Like the bombing of the maternity ward in Mariupol," he said, "Even before it hits the news, you see the videos on the Telegram channels." Multiple pro-Kremlin media figures circulated the post's false claims, including prominent Russian journalist Vladimir Soloviev and the state-controlled Russian outlet RT, according to the DFR Lab's report. The perpetrators use various names to carry out the investment scams. They may also impersonate or clone licensed capital market intermediaries by using the names, logos, credentials, websites and other details of the legitimate entities to promote the illegal schemes. The SC urges the public to refer to the SC’s I nvestor Alert List before investing. The list contains details of unauthorised websites, investment products, companies and individuals. Members of the public who suspect that they have been approached by unauthorised firms or individuals offering schemes that promise unrealistic returns Again, in contrast to Facebook, Google and Twitter, Telegram's founder Pavel Durov runs his company in relative secrecy from Dubai.
from id


Telegram ИХР РАН / ISC RAS
FROM American