Telegram Group & Telegram Channel
кружочек
срочно в номер! в среду состоится внеочередное заседание кружочка! приезжайте кто успеет [9 октября (СРЕДА), 16:15, ауд. 302] Андрей Рябичев, "Константа 42 в гиперболической и комплексной геометрии" Недавно я разобрал будоражащий факт, откуда число 42 берётся…
видео вот https://www.youtube.com/watch?v=ZZYoCN_xzUg

и комментарий: в самом конце доклада Наташа повторила свой вопрос, для каких g оценка 42(2g-2) является точной. назовём их хорошими. я попробовал порассуждать и привёл два аргумента, оба из которых по-видимому неверные.

во-первых, g=2 вроде бы плохое — не существует метрики на поверхности рода 2, имеющей 84 изометрии. такая поверхность действительно разветвлённо накрывала бы сферу с коническими особенностями индексов 2, 3 и 7, но поиск такого накрытия — проблема Гурвица (а именно — представить перестановку циклового типа <2,2,...,2> на 84 элементах в виде произведения перестановки типа <3,...,3> и перестановки типа <7,...,7>), её люди решать в общем случае не умеют.

с другой стороны, есть пример для g=3, когда изометрий 168, см [Farb, Margalit. A primer on mapping class groups, самый конец §7.3]. пока я не понимаю как он устроен, круто если кто-то умеет в такие вещи и может прийти и объяснить.

а во-вторых, если поверхность S накрывает n-листно поверхность S', то не всякий гомеоморфизм S' может подниматься до гомеоморфизма S. даже если это накрытие Галуа (нормальное), образ π₁(S) же не обязательно сохраняется при гомеоморфизме S'. то есть у S по идее может быть не в n раз больше изометрий.

причём (детективная история!) Фарб-Маргалит тоже говорят, что поверхности, для которых оценка 42(2g-2) точна, можно размножать нормальными накрытиями. а этот аргумент неверен — сразу же после этого они приводят ссылку, что хороших g примерно столько же, сколько точных кубов [Michael Larsen. How often is 84(g−1) achieved?], довольно свежую, хотя я сам пока не понимаю что там написано тоже, здорово если кто-нибудь сможет разобрать и пересказать как они это делают.

вообще пишут, уже лет шестьдесят известно, что и плохих g, и хороших g бесконечно много. а конкретный результат звучит так: сумма Σ 1/g^s по всем хорошим g конечна, если s>1/3, а при s≤1/3 ряд расходится. в частности, последовательность хороших g не может содержать бесконечных арифметических прогрессий, поэтому-то размножать хорошие поверхности накрытиями не получится.

вот так, прикиньте! математика



group-telegram.com/kruzhochek179/569
Create:
Last Update:

видео вот https://www.youtube.com/watch?v=ZZYoCN_xzUg

и комментарий: в самом конце доклада Наташа повторила свой вопрос, для каких g оценка 42(2g-2) является точной. назовём их хорошими. я попробовал порассуждать и привёл два аргумента, оба из которых по-видимому неверные.

во-первых, g=2 вроде бы плохое — не существует метрики на поверхности рода 2, имеющей 84 изометрии. такая поверхность действительно разветвлённо накрывала бы сферу с коническими особенностями индексов 2, 3 и 7, но поиск такого накрытия — проблема Гурвица (а именно — представить перестановку циклового типа <2,2,...,2> на 84 элементах в виде произведения перестановки типа <3,...,3> и перестановки типа <7,...,7>), её люди решать в общем случае не умеют.

с другой стороны, есть пример для g=3, когда изометрий 168, см [Farb, Margalit. A primer on mapping class groups, самый конец §7.3]. пока я не понимаю как он устроен, круто если кто-то умеет в такие вещи и может прийти и объяснить.

а во-вторых, если поверхность S накрывает n-листно поверхность S', то не всякий гомеоморфизм S' может подниматься до гомеоморфизма S. даже если это накрытие Галуа (нормальное), образ π₁(S) же не обязательно сохраняется при гомеоморфизме S'. то есть у S по идее может быть не в n раз больше изометрий.

причём (детективная история!) Фарб-Маргалит тоже говорят, что поверхности, для которых оценка 42(2g-2) точна, можно размножать нормальными накрытиями. а этот аргумент неверен — сразу же после этого они приводят ссылку, что хороших g примерно столько же, сколько точных кубов [Michael Larsen. How often is 84(g−1) achieved?], довольно свежую, хотя я сам пока не понимаю что там написано тоже, здорово если кто-нибудь сможет разобрать и пересказать как они это делают.

вообще пишут, уже лет шестьдесят известно, что и плохих g, и хороших g бесконечно много. а конкретный результат звучит так: сумма Σ 1/g^s по всем хорошим g конечна, если s>1/3, а при s≤1/3 ряд расходится. в частности, последовательность хороших g не может содержать бесконечных арифметических прогрессий, поэтому-то размножать хорошие поверхности накрытиями не получится.

вот так, прикиньте! математика

BY кружочек




Share with your friend now:
group-telegram.com/kruzhochek179/569

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The SC urges the public to refer to the SC’s I nvestor Alert List before investing. The list contains details of unauthorised websites, investment products, companies and individuals. Members of the public who suspect that they have been approached by unauthorised firms or individuals offering schemes that promise unrealistic returns But because group chats and the channel features are not end-to-end encrypted, Galperin said user privacy is potentially under threat. There was another possible development: Reuters also reported that Ukraine said that Belarus could soon join the invasion of Ukraine. However, the AFP, citing a Pentagon official, said the U.S. hasn’t yet seen evidence that Belarusian troops are in Ukraine. The Securities and Exchange Board of India (Sebi) had carried out a similar exercise in 2017 in a matter related to circulation of messages through WhatsApp. The regulator said it had received information that messages containing stock tips and other investment advice with respect to selected listed companies are being widely circulated through websites and social media platforms such as Telegram, Facebook, WhatsApp and Instagram.
from id


Telegram кружочек
FROM American