Модель глубокой нейронной сети для точного определения растворимости водорода при подземном хранении предложили томские ученые
🧪 Производство водорода постоянно наращивается, вопрос его хранения является одним из актуальных для отрасли. Сейчас он обычно хранится в газообразной или жидкой фазе в наземных резервуарах, активно развивается направление подземного хранения. Как сообщает пресс-служба Томского политехнического университета (ТПУ), исследователи вуза разработали гибридные модели глубокого обучения для прогнозирования растворимости водорода при его подземном хранении. Полученные ими результаты могут способствовать разработке более эффективных стратегий хранения водорода.
🌐 При подземном хранении водорода используются соленые водоносные горизонты и истощенные газовые или нефтяные пласты. Ученые считают опасным потенциальное взаимодействие водорода с остаточными углеводородами в пласте, подземными минералами и микробами: пригодность таких хранилищ для водорода требует детального изучения, говорят исследователи ТПУ. Так, одним из ключевых параметров является растворимость водорода в рассоле, измерение которой – сложный и дорогостоящий процесс. Методы машинного обучения, включая сверхточные нейронные сети (CNN) и сети долгой краткосрочной памяти (LSTM), могут обеспечить точные и надежные прогнозы растворимости, анализируя различные входные параметры и превосходя традиционные методы.
*️⃣ Однако автономные модели глубокого обучения обладают недостатками, например, высокой вычислительной нагрузкой, медленной сходимостью, чувствительностью к выбросам данных. Улучшить прогнозирование показателей растворимости водорода может интеграция методов глубокого обучения с оптимизационными алгоритмами. Такие гибридные модели, объединяющие CNN и LSTM с алгоритмами оптимизации, и были разработаны учеными ТПУ. В перспективе оптимальные модели могут быть использованы для надежного прогнозирования растворимости H2 без непосредственного проведения лабораторных исследований и в целом привести к разработке более эффективных и экономически выгодных методов подземного хранения водорода, уверены исследователи.
Модель глубокой нейронной сети для точного определения растворимости водорода при подземном хранении предложили томские ученые
🧪 Производство водорода постоянно наращивается, вопрос его хранения является одним из актуальных для отрасли. Сейчас он обычно хранится в газообразной или жидкой фазе в наземных резервуарах, активно развивается направление подземного хранения. Как сообщает пресс-служба Томского политехнического университета (ТПУ), исследователи вуза разработали гибридные модели глубокого обучения для прогнозирования растворимости водорода при его подземном хранении. Полученные ими результаты могут способствовать разработке более эффективных стратегий хранения водорода.
🌐 При подземном хранении водорода используются соленые водоносные горизонты и истощенные газовые или нефтяные пласты. Ученые считают опасным потенциальное взаимодействие водорода с остаточными углеводородами в пласте, подземными минералами и микробами: пригодность таких хранилищ для водорода требует детального изучения, говорят исследователи ТПУ. Так, одним из ключевых параметров является растворимость водорода в рассоле, измерение которой – сложный и дорогостоящий процесс. Методы машинного обучения, включая сверхточные нейронные сети (CNN) и сети долгой краткосрочной памяти (LSTM), могут обеспечить точные и надежные прогнозы растворимости, анализируя различные входные параметры и превосходя традиционные методы.
*️⃣ Однако автономные модели глубокого обучения обладают недостатками, например, высокой вычислительной нагрузкой, медленной сходимостью, чувствительностью к выбросам данных. Улучшить прогнозирование показателей растворимости водорода может интеграция методов глубокого обучения с оптимизационными алгоритмами. Такие гибридные модели, объединяющие CNN и LSTM с алгоритмами оптимизации, и были разработаны учеными ТПУ. В перспективе оптимальные модели могут быть использованы для надежного прогнозирования растворимости H2 без непосредственного проведения лабораторных исследований и в целом привести к разработке более эффективных и экономически выгодных методов подземного хранения водорода, уверены исследователи.
The account, "War on Fakes," was created on February 24, the same day Russian President Vladimir Putin announced a "special military operation" and troops began invading Ukraine. The page is rife with disinformation, according to The Atlantic Council's Digital Forensic Research Lab, which studies digital extremism and published a report examining the channel. The regulator said it had received information that messages containing stock tips and other investment advice with respect to selected listed companies are being widely circulated through websites and social media platforms such as Telegram, Facebook, WhatsApp and Instagram. Despite Telegram's origins, its approach to users' security has privacy advocates worried. Pavel Durov, a billionaire who embraces an all-black wardrobe and is often compared to the character Neo from "the Matrix," funds Telegram through his personal wealth and debt financing. And despite being one of the world's most popular tech companies, Telegram reportedly has only about 30 employees who defer to Durov for most major decisions about the platform. And while money initially moved into stocks in the morning, capital moved out of safe-haven assets. The price of the 10-year Treasury note fell Friday, sending its yield up to 2% from a March closing low of 1.73%.
from id