Telegram Group & Telegram Channel
Вчера вышла интересная статья от ребят из Salesforce. Когда-то для меня было удивлением, что у них вообще есть отдел исследований искусственного интеллекта, ведь их основной бизнес - это SaaS CRM-система (по простому, система управления взаимоотношениями с клиентами по модели предоставления готового ПО). У них даже тикер на бирже CRM, хех 🤔

Так вот, они то и дело выпускают неплохие работы по Large Language Models и мультимодальным моделям, причём субъективно у меня складывается ощущение, что многое делается с задачей уменьшения требуемых ресурсов. То есть не полгода тренировать нейронку на кластере GPU, а нечто более приземленное.

Мультимодальные модели - это модели, работающие с несколькими типами данных, или модальностями. Картинки, текст, звук, видео - это разные модальности, и приемы-архитектуры нейронок должны быть адаптированы для них. Один из самых простых примеров мультимодальности - это ответ на вопрос по картинке: в каком городе находится достопримечательность (и картинка) ? что надето на человеке справа? И так далее.

Основная проблема в том, что нужно связывать два разных сигнала, от изображения и текста. Подходы давно существуют, работают неплохо, но зачастую требуют длительного обучения большиииииих моделек, чтобы "выровнять" их, или связать - то есть чтобы текстовая модель понимала сигнал от картиночной и наоборот.

Господа из Salesforce предложили переиспользовать существующие модели, замораживая их веса во время обучения (то есть не считая по ним градиенты и не изменяя), а между ними обучать маленькую сетку, которая формирует запросы (в прямом и переносном смысле) от одной модели к другой (на прикрепленном изображении это Q-former). Получается, что обучать нужно совсем мало - а метрики выходят лучше, чем у текущего State-of-the-Art подхода.
Подход просто гениален в своей простоте и изящности)

💨 Статья тут, веса и код здесь, коллаб имеется - можно зайти поиграться со своими картинками.
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/seeallochnaya/41
Create:
Last Update:

Вчера вышла интересная статья от ребят из Salesforce. Когда-то для меня было удивлением, что у них вообще есть отдел исследований искусственного интеллекта, ведь их основной бизнес - это SaaS CRM-система (по простому, система управления взаимоотношениями с клиентами по модели предоставления готового ПО). У них даже тикер на бирже CRM, хех 🤔

Так вот, они то и дело выпускают неплохие работы по Large Language Models и мультимодальным моделям, причём субъективно у меня складывается ощущение, что многое делается с задачей уменьшения требуемых ресурсов. То есть не полгода тренировать нейронку на кластере GPU, а нечто более приземленное.

Мультимодальные модели - это модели, работающие с несколькими типами данных, или модальностями. Картинки, текст, звук, видео - это разные модальности, и приемы-архитектуры нейронок должны быть адаптированы для них. Один из самых простых примеров мультимодальности - это ответ на вопрос по картинке: в каком городе находится достопримечательность (и картинка) ? что надето на человеке справа? И так далее.

Основная проблема в том, что нужно связывать два разных сигнала, от изображения и текста. Подходы давно существуют, работают неплохо, но зачастую требуют длительного обучения большиииииих моделек, чтобы "выровнять" их, или связать - то есть чтобы текстовая модель понимала сигнал от картиночной и наоборот.

Господа из Salesforce предложили переиспользовать существующие модели, замораживая их веса во время обучения (то есть не считая по ним градиенты и не изменяя), а между ними обучать маленькую сетку, которая формирует запросы (в прямом и переносном смысле) от одной модели к другой (на прикрепленном изображении это Q-former). Получается, что обучать нужно совсем мало - а метрики выходят лучше, чем у текущего State-of-the-Art подхода.
Подход просто гениален в своей простоте и изящности)

💨 Статья тут, веса и код здесь, коллаб имеется - можно зайти поиграться со своими картинками.

BY Сиолошная




Share with your friend now:
group-telegram.com/seeallochnaya/41

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

But Kliuchnikov, the Ukranian now in France, said he will use Signal or WhatsApp for sensitive conversations, but questions around privacy on Telegram do not give him pause when it comes to sharing information about the war. At the start of 2018, the company attempted to launch an Initial Coin Offering (ICO) which would enable it to enable payments (and earn the cash that comes from doing so). The initial signals were promising, especially given Telegram’s user base is already fairly crypto-savvy. It raised an initial tranche of cash – worth more than a billion dollars – to help develop the coin before opening sales to the public. Unfortunately, third-party sales of coins bought in those initial fundraising rounds raised the ire of the SEC, which brought the hammer down on the whole operation. In 2020, officials ordered Telegram to pay a fine of $18.5 million and hand back much of the cash that it had raised. Since January 2022, the SC has received a total of 47 complaints and enquiries on illegal investment schemes promoted through Telegram. These fraudulent schemes offer non-existent investment opportunities, promising very attractive and risk-free returns within a short span of time. They commonly offer unrealistic returns of as high as 1,000% within 24 hours or even within a few hours. For example, WhatsApp restricted the number of times a user could forward something, and developed automated systems that detect and flag objectionable content. The account, "War on Fakes," was created on February 24, the same day Russian President Vladimir Putin announced a "special military operation" and troops began invading Ukraine. The page is rife with disinformation, according to The Atlantic Council's Digital Forensic Research Lab, which studies digital extremism and published a report examining the channel.
from id


Telegram Сиолошная
FROM American