Telegram Group & Telegram Channel
сладко стянул
над любым кольцом оказывается верно! у Лемэра записано над полем, наверно и доказательство обобщается, но проще передоказать. Например, пункт (1): индукция по размерности. Пусть в размерностях <n доказали, что сюръективен. Возьмём элемент b∈B степени n. Он…
Как настроиться на праздник? Вспомнить, что конечнопорожденные модули над областями главных идеалов* устроены как никогда приятно:

Теорема: пусть k — ОГИ, M — к.п. k-модуль. Тогда M раскладывается в прямую сумму циклических модулей:
M = k/(d_1)k/(d_2)..k/(d_n),
d_1,..,d_n k,
причём:
1) d_i делит d_{i+1} для каждого i;
2) все d_i необратимы.
Более того: если взять два таких разложения, то в них
3) число n одно и то же;
4) соответствующие d_i пропорциональны (отличаются на обратимый элемент).

Среди элементов d_i первые s ненулевые, а последние n-s штук равны нулю (возможно, s=0 или s=n). То есть у нас n-s свободных прямых слагаемых и s слагаемых "кручения". Из теоремы следует, что числа s и n определены однозначно. Мне сегодня хочется обозначить
n = gen(M), s = rel(M).
Другая точка зрения: есть короткая точная последовательность k-модулей
k^rel(M) -> k^gen(M) -> M -> 0,
которую "нельзя уменьшить".
[действительно: если
k^s' -f-> k^n' -> M -> 0,
то можно привести f к нормальной форме Смита. Это задаст изоморфизм как в теореме выше; только, возможно, добавятся тривиальные прямые слагаемые вида k/(1). Получим s'=rel(M)+p, n'=gen(M)+q для каких-то p≥q≥0.]

Вопрос. Пусть k — коммутативное кольцо с единицей. Зафиксируем k-модуль M. Рассмотрим все пары (n,s) такие, что существует короткая точная последовательность
k^s -> k^n -> M -> 0.
Как мы убедились выше, для ОГИ получается "треугольник"
{(gen(M)+p, rel(M)+q): q≥p≥0}.
А насколько всё сложно для произвольного k? Например:
(а) Правда ли, что если n1≥n2, то s1≥s2?
(б) Правда ли, что n и s минимизируются одновременно?

*Пусть k — коммутативное кольцо с единицей.
k — кольцо главных идеалов, если любой идеал главный.
k — область целостности, если нет делителей нуля.
k — область главных идеалов, если это одновременно кольцо главных идеалов и область целостности



group-telegram.com/sweet_homotopy/1935
Create:
Last Update:

Как настроиться на праздник? Вспомнить, что конечнопорожденные модули над областями главных идеалов* устроены как никогда приятно:

Теорема: пусть k — ОГИ, M — к.п. k-модуль. Тогда M раскладывается в прямую сумму циклических модулей:
M = k/(d_1)k/(d_2)..k/(d_n),
d_1,..,d_n k,
причём:
1) d_i делит d_{i+1} для каждого i;
2) все d_i необратимы.
Более того: если взять два таких разложения, то в них
3) число n одно и то же;
4) соответствующие d_i пропорциональны (отличаются на обратимый элемент).

Среди элементов d_i первые s ненулевые, а последние n-s штук равны нулю (возможно, s=0 или s=n). То есть у нас n-s свободных прямых слагаемых и s слагаемых "кручения". Из теоремы следует, что числа s и n определены однозначно. Мне сегодня хочется обозначить
n = gen(M), s = rel(M).
Другая точка зрения: есть короткая точная последовательность k-модулей
k^rel(M) -> k^gen(M) -> M -> 0,
которую "нельзя уменьшить".
[действительно: если
k^s' -f-> k^n' -> M -> 0,
то можно привести f к нормальной форме Смита. Это задаст изоморфизм как в теореме выше; только, возможно, добавятся тривиальные прямые слагаемые вида k/(1). Получим s'=rel(M)+p, n'=gen(M)+q для каких-то p≥q≥0.]

Вопрос. Пусть k — коммутативное кольцо с единицей. Зафиксируем k-модуль M. Рассмотрим все пары (n,s) такие, что существует короткая точная последовательность
k^s -> k^n -> M -> 0.
Как мы убедились выше, для ОГИ получается "треугольник"
{(gen(M)+p, rel(M)+q): q≥p≥0}.
А насколько всё сложно для произвольного k? Например:
(а) Правда ли, что если n1≥n2, то s1≥s2?
(б) Правда ли, что n и s минимизируются одновременно?

*Пусть k — коммутативное кольцо с единицей.
k — кольцо главных идеалов, если любой идеал главный.
k — область целостности, если нет делителей нуля.
k — область главных идеалов, если это одновременно кольцо главных идеалов и область целостности

BY сладко стянул




Share with your friend now:
group-telegram.com/sweet_homotopy/1935

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

READ MORE Unlike Silicon Valley giants such as Facebook and Twitter, which run very public anti-disinformation programs, Brooking said: "Telegram is famously lax or absent in its content moderation policy." A Russian Telegram channel with over 700,000 followers is spreading disinformation about Russia's invasion of Ukraine under the guise of providing "objective information" and fact-checking fake news. Its influence extends beyond the platform, with major Russian publications, government officials, and journalists citing the page's posts. Since January 2022, the SC has received a total of 47 complaints and enquiries on illegal investment schemes promoted through Telegram. These fraudulent schemes offer non-existent investment opportunities, promising very attractive and risk-free returns within a short span of time. They commonly offer unrealistic returns of as high as 1,000% within 24 hours or even within a few hours. Founder Pavel Durov says tech is meant to set you free
from id


Telegram сладко стянул
FROM American