Notice: file_put_contents(): Write of 3441 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50

Warning: file_put_contents(): Only 8192 of 11633 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50
Системный Блокъ | Telegram Webview: sysblok/627 -
Telegram Group & Telegram Channel
Как дообучить языковую модель писать в стиле Достоевского

Как обучить нейросеть на своих данных? Какие бывают параметры обучения/генерации, и на что они влияют? Как оптимизировать процесс обучения, если нет видеокарты? Отвечаем на все эти вопросы в нашем туториале по файн-тюнингу ruGPT3 на текстах Достоевского.

Кратко: о чем
статья?

Fine-Tuning — это способ улучшить предварительно обученную модель, которая уже имеет некоторые знания, путем небольших корректировок. Благодаря нему языковую модель можно обучить генерировать тексты в самых разных стилях: от комментариев из Одноклассников до прозы Лермонтова. Для fine-tuning достаточно нескольких мегабайтов текстов, что примерно эквивалентно 10-15 произведениям.

При этом дообучение любых нейросетей требует вычислительные мощности, то есть GPU (видеокарты). Работать с видеокартой бесплатно можно с помощью сервиса Google Colab, в который как раз можно вместить самую маленькую версию русскоязычной модели ruGPT3. А в качестве данных можно взять готовый корпус, состоящий из 34 произведений Достоевского.

Если четко следовать инструкции, модель, подстраиваясь под стиль Достоевского, сгенерирует, например такую фразу: «Кофею, а? Нет-с. Не надо; да и не нужно…». На этом примере видно, что она уловила такие архаичные формы, как «кофею», словоерс «нет-с» и некоторые другие особенности поэтики писателя.

Полный подробный текст инструкции для дообучения модели на корпусе Достоевского, построчно прокомментированный скрипт для обучения языковых моделей и примеры других результатов найдёте в полном тексте статьи. Если будете обучать модель на текстах других писателей (или — тоже Достоевского) — обязательно делитесь в комментариях результатами.

Время чтения: 19 минут.



group-telegram.com/sysblok/627
Create:
Last Update:

Как дообучить языковую модель писать в стиле Достоевского

Как обучить нейросеть на своих данных? Какие бывают параметры обучения/генерации, и на что они влияют? Как оптимизировать процесс обучения, если нет видеокарты? Отвечаем на все эти вопросы в нашем туториале по файн-тюнингу ruGPT3 на текстах Достоевского.

Кратко: о чем
статья?

Fine-Tuning — это способ улучшить предварительно обученную модель, которая уже имеет некоторые знания, путем небольших корректировок. Благодаря нему языковую модель можно обучить генерировать тексты в самых разных стилях: от комментариев из Одноклассников до прозы Лермонтова. Для fine-tuning достаточно нескольких мегабайтов текстов, что примерно эквивалентно 10-15 произведениям.

При этом дообучение любых нейросетей требует вычислительные мощности, то есть GPU (видеокарты). Работать с видеокартой бесплатно можно с помощью сервиса Google Colab, в который как раз можно вместить самую маленькую версию русскоязычной модели ruGPT3. А в качестве данных можно взять готовый корпус, состоящий из 34 произведений Достоевского.

Если четко следовать инструкции, модель, подстраиваясь под стиль Достоевского, сгенерирует, например такую фразу: «Кофею, а? Нет-с. Не надо; да и не нужно…». На этом примере видно, что она уловила такие архаичные формы, как «кофею», словоерс «нет-с» и некоторые другие особенности поэтики писателя.

Полный подробный текст инструкции для дообучения модели на корпусе Достоевского, построчно прокомментированный скрипт для обучения языковых моделей и примеры других результатов найдёте в полном тексте статьи. Если будете обучать модель на текстах других писателей (или — тоже Достоевского) — обязательно делитесь в комментариях результатами.

Время чтения: 19 минут.

BY Системный Блокъ




Share with your friend now:
group-telegram.com/sysblok/627

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Founder Pavel Durov says tech is meant to set you free There was another possible development: Reuters also reported that Ukraine said that Belarus could soon join the invasion of Ukraine. However, the AFP, citing a Pentagon official, said the U.S. hasn’t yet seen evidence that Belarusian troops are in Ukraine. Messages are not fully encrypted by default. That means the company could, in theory, access the content of the messages, or be forced to hand over the data at the request of a government. "We as Ukrainians believe that the truth is on our side, whether it's truth that you're proclaiming about the war and everything else, why would you want to hide it?," he said.
from id


Telegram Системный Блокъ
FROM American