Telegram Group & Telegram Channel
Долго забывала написать в паблике про препринт статьи "Improving Interpretability and Robustness for the Detection of AI-Generated Images", над которым мы работали совместно с Таней ( @dl_stories ), а также с Германом ( @junkyardmathml ) и другими коллегами, но сегодня, наконец, исправляюсь. 🧐
В данной работе было сделано несколько наблюдений про детекцию искусственно сгенерированных изображений с помощью эмбеддингов модели CLIP:

1️⃣ Допустим, у нас есть: A - набор картинок, на которых обучалась заданная генеративная модель (т.е. какой-нибудь GAN или Diffusion Model) и B - набор картинок, которые эта модель сгенерировала. Далее эти картинки можно подать на вход CLIP и извлечь из его последнего слоя эмбеддинги, соответствующие картинкам: A' и B'. Так вот, для каждого отдельного генератора, который мы рассмотрели, эти эмбеддинги оказывались линейно разделимыми с достаточно большой точностью, но при этом у разных генераторов разделяющая плоскость проводилась по-разному, что являлось причиной проблем с робастностью классификатора на этих эмбеддингах. Рассмотрев отрезок, соединяющий центроиды кластеров A' и B' для какого-то генератора ("Residual" на рис. 1), можно понять причины того, почему так происходит.
Как мы помним, пространство эмбеддингов CLIP является общим для картинок и текстов, так что для каждого вектора в этом пространстве можно найти текст, который ближе всего к нему по смыслу. И если рассмотреть тексты, которые ближе всего по смыслу к Residual-ам, то можно понять, в чем конкретно заключается отличительная особенность картинок, сделанных каждым генератором. У некоторых генераторов ближайший текст так и будет выглядеть как "generated photo", у других ближайший текст - это что-то на тему детальности или цветовой гаммы картинок (например, что-нибудь про "vibrant" и "detailed") и т.д. Таким образом, мы показали простой способ интерпретировать работу классификатора сгенерированных картинок на эмбеддингах.

2️⃣ Мы также обнаружили, что некоторые компоненты финального эмбеддинга CLIP хранят в себе информацию, которая важна для детекции конкретного генератора (или конкретного типа генераторов, например, GANов), но уменьшает качество переноса детектора на другой генератор. Если найти и удалить эти компоненты, то можно существенно улучшить робастность классификатора при изменении генерирующей модели. Особенно интересно, что получилось улучшить переносимость классификатора с детекции генераторов-диффузий на детекцию генераторов-GANов (и обратно).

3️⃣ Кроме того, оказалось, что некоторые головы внимания CLIP выделяют более полезные для робастной классификации фичи, чем другие. С помощью этого наблюдения тоже можно выудить из CLIP-а информацию, которая позволяет классифицировать картинки более робастно, чем это делал стандартный классификатор на эмбеддингах CLIP. И здесь тоже можно улучшить переносимость классификатора с детекции генераторов-диффузий на детекцию генераторов-GANов и наоборот.

В общем, такой вот вклад в улучшение интерпретируемости и робастности детекции сгенерированных изображений. Ну а я пошла дальше траву трогать. 🏃🏕🌳

#объяснения_статей
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/tech_priestess/1648
Create:
Last Update:

Долго забывала написать в паблике про препринт статьи "Improving Interpretability and Robustness for the Detection of AI-Generated Images", над которым мы работали совместно с Таней ( @dl_stories ), а также с Германом ( @junkyardmathml ) и другими коллегами, но сегодня, наконец, исправляюсь. 🧐
В данной работе было сделано несколько наблюдений про детекцию искусственно сгенерированных изображений с помощью эмбеддингов модели CLIP:

1️⃣ Допустим, у нас есть: A - набор картинок, на которых обучалась заданная генеративная модель (т.е. какой-нибудь GAN или Diffusion Model) и B - набор картинок, которые эта модель сгенерировала. Далее эти картинки можно подать на вход CLIP и извлечь из его последнего слоя эмбеддинги, соответствующие картинкам: A' и B'. Так вот, для каждого отдельного генератора, который мы рассмотрели, эти эмбеддинги оказывались линейно разделимыми с достаточно большой точностью, но при этом у разных генераторов разделяющая плоскость проводилась по-разному, что являлось причиной проблем с робастностью классификатора на этих эмбеддингах. Рассмотрев отрезок, соединяющий центроиды кластеров A' и B' для какого-то генератора ("Residual" на рис. 1), можно понять причины того, почему так происходит.
Как мы помним, пространство эмбеддингов CLIP является общим для картинок и текстов, так что для каждого вектора в этом пространстве можно найти текст, который ближе всего к нему по смыслу. И если рассмотреть тексты, которые ближе всего по смыслу к Residual-ам, то можно понять, в чем конкретно заключается отличительная особенность картинок, сделанных каждым генератором. У некоторых генераторов ближайший текст так и будет выглядеть как "generated photo", у других ближайший текст - это что-то на тему детальности или цветовой гаммы картинок (например, что-нибудь про "vibrant" и "detailed") и т.д. Таким образом, мы показали простой способ интерпретировать работу классификатора сгенерированных картинок на эмбеддингах.

2️⃣ Мы также обнаружили, что некоторые компоненты финального эмбеддинга CLIP хранят в себе информацию, которая важна для детекции конкретного генератора (или конкретного типа генераторов, например, GANов), но уменьшает качество переноса детектора на другой генератор. Если найти и удалить эти компоненты, то можно существенно улучшить робастность классификатора при изменении генерирующей модели. Особенно интересно, что получилось улучшить переносимость классификатора с детекции генераторов-диффузий на детекцию генераторов-GANов (и обратно).

3️⃣ Кроме того, оказалось, что некоторые головы внимания CLIP выделяют более полезные для робастной классификации фичи, чем другие. С помощью этого наблюдения тоже можно выудить из CLIP-а информацию, которая позволяет классифицировать картинки более робастно, чем это делал стандартный классификатор на эмбеддингах CLIP. И здесь тоже можно улучшить переносимость классификатора с детекции генераторов-диффузий на детекцию генераторов-GANов и наоборот.

В общем, такой вот вклад в улучшение интерпретируемости и робастности детекции сгенерированных изображений. Ну а я пошла дальше траву трогать. 🏃🏕🌳

#объяснения_статей

BY Техножрица 👩‍💻👩‍🏫👩‍🔧




Share with your friend now:
group-telegram.com/tech_priestess/1648

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

At the start of 2018, the company attempted to launch an Initial Coin Offering (ICO) which would enable it to enable payments (and earn the cash that comes from doing so). The initial signals were promising, especially given Telegram’s user base is already fairly crypto-savvy. It raised an initial tranche of cash – worth more than a billion dollars – to help develop the coin before opening sales to the public. Unfortunately, third-party sales of coins bought in those initial fundraising rounds raised the ire of the SEC, which brought the hammer down on the whole operation. In 2020, officials ordered Telegram to pay a fine of $18.5 million and hand back much of the cash that it had raised. The company maintains that it cannot act against individual or group chats, which are “private amongst their participants,” but it will respond to requests in relation to sticker sets, channels and bots which are publicly available. During the invasion of Ukraine, Pavel Durov has wrestled with this issue a lot more prominently than he has before. Channels like Donbass Insider and Bellum Acta, as reported by Foreign Policy, started pumping out pro-Russian propaganda as the invasion began. So much so that the Ukrainian National Security and Defense Council issued a statement labeling which accounts are Russian-backed. Ukrainian officials, in potential violation of the Geneva Convention, have shared imagery of dead and captured Russian soldiers on the platform. Under the Sebi Act, the regulator has the power to carry out search and seizure of books, registers, documents including electronics and digital devices from any person associated with the securities market. "Someone posing as a Ukrainian citizen just joins the chat and starts spreading misinformation, or gathers data, like the location of shelters," Tsekhanovska said, noting how false messages have urged Ukrainians to turn off their phones at a specific time of night, citing cybersafety.
from id


Telegram Техножрица 👩‍💻👩‍🏫👩‍🔧
FROM American