Telegram Group & Telegram Channel
Forwarded from Zanis ISE
📣 سرفصل های دوره دیتاآنالیز:

1. آشنایی و معرفی هوش مصنوعی و بررسی مفاهیم اساسی مانند یادگیری ماشین، یادگیری عمیق، شبکه‌های عصبی و کاربردهای آن در دنیای واقعی

2.راهنمای نصب و راه‌اندازی محیط‌های نرم‌افزاری و سخت‌افزاری مناسب برای اجرای مدل‌های هوش مصنوعی و یادگیری ماشین

3.معرفی اصول جبر خطی، مفاهیمی نظیر ماتریس‌ها، بردارها، اعمال خطی و اهمیت آن‌ها در مدل‌سازی و تحلیل داده‌ها در زمینه هوش مصنوعی و یادگیری ماشین

4.آموزش و آشنایی با ابزارها و پکیج‌های مختلف برای پیش‌پردازش داده‌ها، مانند پاک‌سازی داده‌ها، نرمال‌سازی، تبدیل داده‌ها و تحلیل اکتشافی داده‌ها

5.تحلیل اکتشافی داده(EDA)
فرآیند تجزیه و تحلیل داده‌ها برای شناسایی الگوها و ویژگی‌های مختلف داده‌ها، شامل استفاده از ابزارهای آماری و مصور سازی برای کشف اطلاعات مخفی در داده‌ها

6.آموزش و کار با پکیج‌های مختلف مصورسازی داده‌ها مثل Matplotlib و Seaborn

7.راهنمای نصب و استفاده از Anaconda، یک محیط مدیریتی محبوب برای نصب و مدیریت پکیج‌ها و ابزارهای علم داده و هوش مصنوعی

8. بیان مفهوم Virtual Env در پایتون و چگونگی استفاده از آن‌ها برای مدیریت پکیج‌ها و کتابخانه‌ها در پروژه‌های مختلف به‌صورت ایزوله و مستقل

9.آموزش نحوه استفاده از ابزار pip برای نصب پکیج‌ها و کتابخانه‌های پایتون از مخزن PyPI (Python Package Index).

10.آموزش نحوه استفاده از conda برای نصب و مدیریت پکیج‌ها و محیط‌ها در پایتون، به‌ویژه برای پروژه‌های مربوط به علم داده و یادگیری ماشین

11. نصب کلیه پکیج‌های مورد نیاز در طول دوره

12.معرفی محیط‌های توسعه یکپارچه (IDE) مختلف برای کدنویسی و توسعه پروژه‌های هوش مصنوعی، مانند Jupyter Notebook، PyCharm و VS Code.

13.معرفی پکیج Matplotlib و ابزارهای آن جهت مصورسازی داده ها

14.آموزش نحوه ساخت و سفارشی‌سازی انواع نمودارهای مختلف در Matplotlib:
Line Plot: ترسیم نمودار خط.
Scatter Plot: ترسیم نمودار پراکندگی.
Step Plot: ترسیم نمودار گام‌به‌گام.
Bar Plot: ترسیم نمودار میله‌ای.
Histogram: ترسیم هیستوگرام برای بررسی توزیع داده‌ها.
Box Plot: ترسیم نمودار جعبه‌ای برای تحلیل توزیع و ناهنجاری‌ها.
3D Plot: ترسیم نمودار سه‌بعدی برای داده‌های چندمتغیره.
Plot Attributes: سفارشی‌سازی ویژگی‌های نمودارها مانند عنوان، برچسب‌ها و رنگ‌ها

15.معرفی ماتریس‌ها و نحوه تبدیل داده‌ها به آن

16.بررسی ابعاد مختلف داده‌ها و نحوه استفاده از داده‌های تک‌بعدی، دوبعدی و چندبعدی در تحلیل‌های مختلف

17.مروری بر عملیات جبر خطی شامل جمع و ضرب ماتریس‌ها و بردارها، معکوس‌گیری از ماتریس‌ها و کاربرد آن‌ها

18.معرفی فضای برداری و نمایش نمونه‌های یک ماتریس در آن

19.بررسی روش‌های مختلف تحلیل داده‌ها و ضرورت انتخاب رویکرد مناسب برای رسیدن به درک صحیح و استخراج اطلاعات مفید از داده‌ها

20.آشنایی با علم آمار و تقسیم‌بندی آن

21.بررسی مفاهیم آمار توصیفی مانند میانگین، میانه، واریانس، چولگی و کشیدگی به‌منظور تحلیل و خلاصه‌سازی داده‌ها

22.معرفی گشتاورهای آماری و کاربرد آن‌ها در شبیه‌سازی و تحلیل ویژگی‌های توزیع داده‌ها

23.مقایسه میانگین و میانه به‌عنوان دو معیار مهم مرکزی در تحلیل داده‌ها

24.تعریف واریانس و نحوه استفاده از آن برای اندازه‌گیری پراکندگی داده‌ها

25.توضیح چولگی و نحوه تأثیر آن بر شکل توزیع داده‌ها

26.معرفی مفهوم کشیدگی و تأثیر آن بر توزیع‌های آماری

27.همبستگی داده‌ها

28.معرفی توزیع‌های آماری مختلف مانند نرمال، یونیفرم، برنولی، باینومیال و پوآسون و استفاده از پکیج SciPy برای شبیه‌سازی و تحلیل این توزیع‌ها

29.بررسی آزمون‌های آماری مختلف برای شناسایی توزیع‌های مناسب برای داده‌ها و تأثیر آن‌ها در تحلیل‌های استنباطی

30.بررسی آزمون جنسون-شنون و کاربرد آن برای اندازه‌گیری فاصله بین توزیع‌های مختلف



group-telegram.com/NeuroZanis/245
Create:
Last Update:

📣 سرفصل های دوره دیتاآنالیز:

1. آشنایی و معرفی هوش مصنوعی و بررسی مفاهیم اساسی مانند یادگیری ماشین، یادگیری عمیق، شبکه‌های عصبی و کاربردهای آن در دنیای واقعی

2.راهنمای نصب و راه‌اندازی محیط‌های نرم‌افزاری و سخت‌افزاری مناسب برای اجرای مدل‌های هوش مصنوعی و یادگیری ماشین

3.معرفی اصول جبر خطی، مفاهیمی نظیر ماتریس‌ها، بردارها، اعمال خطی و اهمیت آن‌ها در مدل‌سازی و تحلیل داده‌ها در زمینه هوش مصنوعی و یادگیری ماشین

4.آموزش و آشنایی با ابزارها و پکیج‌های مختلف برای پیش‌پردازش داده‌ها، مانند پاک‌سازی داده‌ها، نرمال‌سازی، تبدیل داده‌ها و تحلیل اکتشافی داده‌ها

5.تحلیل اکتشافی داده(EDA)
فرآیند تجزیه و تحلیل داده‌ها برای شناسایی الگوها و ویژگی‌های مختلف داده‌ها، شامل استفاده از ابزارهای آماری و مصور سازی برای کشف اطلاعات مخفی در داده‌ها

6.آموزش و کار با پکیج‌های مختلف مصورسازی داده‌ها مثل Matplotlib و Seaborn

7.راهنمای نصب و استفاده از Anaconda، یک محیط مدیریتی محبوب برای نصب و مدیریت پکیج‌ها و ابزارهای علم داده و هوش مصنوعی

8. بیان مفهوم Virtual Env در پایتون و چگونگی استفاده از آن‌ها برای مدیریت پکیج‌ها و کتابخانه‌ها در پروژه‌های مختلف به‌صورت ایزوله و مستقل

9.آموزش نحوه استفاده از ابزار pip برای نصب پکیج‌ها و کتابخانه‌های پایتون از مخزن PyPI (Python Package Index).

10.آموزش نحوه استفاده از conda برای نصب و مدیریت پکیج‌ها و محیط‌ها در پایتون، به‌ویژه برای پروژه‌های مربوط به علم داده و یادگیری ماشین

11. نصب کلیه پکیج‌های مورد نیاز در طول دوره

12.معرفی محیط‌های توسعه یکپارچه (IDE) مختلف برای کدنویسی و توسعه پروژه‌های هوش مصنوعی، مانند Jupyter Notebook، PyCharm و VS Code.

13.معرفی پکیج Matplotlib و ابزارهای آن جهت مصورسازی داده ها

14.آموزش نحوه ساخت و سفارشی‌سازی انواع نمودارهای مختلف در Matplotlib:
Line Plot: ترسیم نمودار خط.
Scatter Plot: ترسیم نمودار پراکندگی.
Step Plot: ترسیم نمودار گام‌به‌گام.
Bar Plot: ترسیم نمودار میله‌ای.
Histogram: ترسیم هیستوگرام برای بررسی توزیع داده‌ها.
Box Plot: ترسیم نمودار جعبه‌ای برای تحلیل توزیع و ناهنجاری‌ها.
3D Plot: ترسیم نمودار سه‌بعدی برای داده‌های چندمتغیره.
Plot Attributes: سفارشی‌سازی ویژگی‌های نمودارها مانند عنوان، برچسب‌ها و رنگ‌ها

15.معرفی ماتریس‌ها و نحوه تبدیل داده‌ها به آن

16.بررسی ابعاد مختلف داده‌ها و نحوه استفاده از داده‌های تک‌بعدی، دوبعدی و چندبعدی در تحلیل‌های مختلف

17.مروری بر عملیات جبر خطی شامل جمع و ضرب ماتریس‌ها و بردارها، معکوس‌گیری از ماتریس‌ها و کاربرد آن‌ها

18.معرفی فضای برداری و نمایش نمونه‌های یک ماتریس در آن

19.بررسی روش‌های مختلف تحلیل داده‌ها و ضرورت انتخاب رویکرد مناسب برای رسیدن به درک صحیح و استخراج اطلاعات مفید از داده‌ها

20.آشنایی با علم آمار و تقسیم‌بندی آن

21.بررسی مفاهیم آمار توصیفی مانند میانگین، میانه، واریانس، چولگی و کشیدگی به‌منظور تحلیل و خلاصه‌سازی داده‌ها

22.معرفی گشتاورهای آماری و کاربرد آن‌ها در شبیه‌سازی و تحلیل ویژگی‌های توزیع داده‌ها

23.مقایسه میانگین و میانه به‌عنوان دو معیار مهم مرکزی در تحلیل داده‌ها

24.تعریف واریانس و نحوه استفاده از آن برای اندازه‌گیری پراکندگی داده‌ها

25.توضیح چولگی و نحوه تأثیر آن بر شکل توزیع داده‌ها

26.معرفی مفهوم کشیدگی و تأثیر آن بر توزیع‌های آماری

27.همبستگی داده‌ها

28.معرفی توزیع‌های آماری مختلف مانند نرمال، یونیفرم، برنولی، باینومیال و پوآسون و استفاده از پکیج SciPy برای شبیه‌سازی و تحلیل این توزیع‌ها

29.بررسی آزمون‌های آماری مختلف برای شناسایی توزیع‌های مناسب برای داده‌ها و تأثیر آن‌ها در تحلیل‌های استنباطی

30.بررسی آزمون جنسون-شنون و کاربرد آن برای اندازه‌گیری فاصله بین توزیع‌های مختلف

BY NeuroZanis


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/NeuroZanis/245

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

That hurt tech stocks. For the past few weeks, the 10-year yield has traded between 1.72% and 2%, as traders moved into the bond for safety when Russia headlines were ugly—and out of it when headlines improved. Now, the yield is touching its pandemic-era high. If the yield breaks above that level, that could signal that it’s on a sustainable path higher. Higher long-dated bond yields make future profits less valuable—and many tech companies are valued on the basis of profits forecast for many years in the future. Telegram was co-founded by Pavel and Nikolai Durov, the brothers who had previously created VKontakte. VK is Russia’s equivalent of Facebook, a social network used for public and private messaging, audio and video sharing as well as online gaming. In January, SimpleWeb reported that VK was Russia’s fourth most-visited website, after Yandex, YouTube and Google’s Russian-language homepage. In 2016, Forbes’ Michael Solomon described Pavel Durov (pictured, below) as the “Mark Zuckerberg of Russia.” He said that since his platform does not have the capacity to check all channels, it may restrict some in Russia and Ukraine "for the duration of the conflict," but then reversed course hours later after many users complained that Telegram was an important source of information. The news also helped traders look past another report showing decades-high inflation and shake off some of the volatility from recent sessions. The Bureau of Labor Statistics' February Consumer Price Index (CPI) this week showed another surge in prices even before Russia escalated its attacks in Ukraine. The headline CPI — soaring 7.9% over last year — underscored the sticky inflationary pressures reverberating across the U.S. economy, with everything from groceries to rents and airline fares getting more expensive for everyday consumers. Overall, extreme levels of fear in the market seems to have morphed into something more resembling concern. For example, the Cboe Volatility Index fell from its 2022 peak of 36, which it hit Monday, to around 30 on Friday, a sign of easing tensions. Meanwhile, while the price of WTI crude oil slipped from Sunday’s multiyear high $130 of barrel to $109 a pop. Markets have been expecting heavy restrictions on Russian oil, some of which the U.S. has already imposed, and that would reduce the global supply and bring about even more burdensome inflation.
from in


Telegram NeuroZanis
FROM American