Telegram Group & Telegram Channel
🚀Только что выпущено новое семейство моделей генерации кода Salesforce (SFR-Embedding-Code), занявшее 1-е место на бенчмарке CoIR!

Модель доступна в в 2-х размерах: 2B, 400M.

Основные характеристики:
1️⃣ Модель 2B: Занимает первое место в CoIR.
2️⃣ Модель 400M: демонстрирует лучшие показатели среди моделей на 0,5B параметров.
3️⃣ Поддерживает 12 языков программирования, Python, Java, C++, JavaScript, C# и другие!

Пример Запуска:

import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel

# Each query needs to be accompanied by an corresponding instruction describing the task.
query_instruction_example = "Given Code or Text, retrieval relevant content"
queries = [
"how to implement quick sort in Python?"
]

# No instruction needed for retrieval passages
passages = [
"def quick_sort(arr):\n if len(arr) <= 1:\n return arr\n pivot = arr[len(arr) // 2]\n left = [x for x in arr if x < pivot]\n middle = [x for x in arr if x == pivot]\n right = [x for x in arr if x > pivot]\n return quick_sort(left) + middle + quick_sort(right)",
"def bubble_sort(arr):\n n = len(arr)\n for i in range(n):\n for j in range(0, n-i-1):\n if arr[j] > arr[j+1]:\n arr[j], arr[j+1] = arr[j+1], arr[j]\n return arr"
]

# load model with tokenizer
model = AutoModel.from_pretrained('Salesforce/SFR-Embedding-Code-2B_R', trust_remote_code=True)

# get the embeddings
max_length = 32768
query_embeddings = model.encode_queries(queries, instruction=query_instruction_example, max_length=max_length)
passage_embeddings = model.encode_corpus(passages, max_length=max_length)

# normalize embeddings
query_embeddings = F.normalize(query_embeddings, p=2, dim=1)
passage_embeddings = F.normalize(passage_embeddings, p=2, dim=1)

scores = (query_embeddings @ passage_embeddings.T) * 100
print(scores.tolist())



Документация
Модель 400M
Модель 2B


📌Лицензирование моделей: CC-BY-NC-SA-4.0 License.

@ai_machinelearning_big_data


#CodeAI #MLResearch #SOTA #OpenScience #code #llm #ml



group-telegram.com/ai_machinelearning_big_data/6575
Create:
Last Update:

🚀Только что выпущено новое семейство моделей генерации кода Salesforce (SFR-Embedding-Code), занявшее 1-е место на бенчмарке CoIR!

Модель доступна в в 2-х размерах: 2B, 400M.

Основные характеристики:
1️⃣ Модель 2B: Занимает первое место в CoIR.
2️⃣ Модель 400M: демонстрирует лучшие показатели среди моделей на 0,5B параметров.
3️⃣ Поддерживает 12 языков программирования, Python, Java, C++, JavaScript, C# и другие!

Пример Запуска:

import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel

# Each query needs to be accompanied by an corresponding instruction describing the task.
query_instruction_example = "Given Code or Text, retrieval relevant content"
queries = [
"how to implement quick sort in Python?"
]

# No instruction needed for retrieval passages
passages = [
"def quick_sort(arr):\n if len(arr) <= 1:\n return arr\n pivot = arr[len(arr) // 2]\n left = [x for x in arr if x < pivot]\n middle = [x for x in arr if x == pivot]\n right = [x for x in arr if x > pivot]\n return quick_sort(left) + middle + quick_sort(right)",
"def bubble_sort(arr):\n n = len(arr)\n for i in range(n):\n for j in range(0, n-i-1):\n if arr[j] > arr[j+1]:\n arr[j], arr[j+1] = arr[j+1], arr[j]\n return arr"
]

# load model with tokenizer
model = AutoModel.from_pretrained('Salesforce/SFR-Embedding-Code-2B_R', trust_remote_code=True)

# get the embeddings
max_length = 32768
query_embeddings = model.encode_queries(queries, instruction=query_instruction_example, max_length=max_length)
passage_embeddings = model.encode_corpus(passages, max_length=max_length)

# normalize embeddings
query_embeddings = F.normalize(query_embeddings, p=2, dim=1)
passage_embeddings = F.normalize(passage_embeddings, p=2, dim=1)

scores = (query_embeddings @ passage_embeddings.T) * 100
print(scores.tolist())



Документация
Модель 400M
Модель 2B


📌Лицензирование моделей: CC-BY-NC-SA-4.0 License.

@ai_machinelearning_big_data


#CodeAI #MLResearch #SOTA #OpenScience #code #llm #ml

BY Machinelearning











Share with your friend now:
group-telegram.com/ai_machinelearning_big_data/6575

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

On December 23rd, 2020, Pavel Durov posted to his channel that the company would need to start generating revenue. In early 2021, he added that any advertising on the platform would not use user data for targeting, and that it would be focused on “large one-to-many channels.” He pledged that ads would be “non-intrusive” and that most users would simply not notice any change. Meanwhile, a completely redesigned attachment menu appears when sending multiple photos or vides. Users can tap "X selected" (X being the number of items) at the top of the panel to preview how the album will look in the chat when it's sent, as well as rearrange or remove selected media. In February 2014, the Ukrainian people ousted pro-Russian president Viktor Yanukovych, prompting Russia to invade and annex the Crimean peninsula. By the start of April, Pavel Durov had given his notice, with TechCrunch saying at the time that the CEO had resisted pressure to suppress pages criticizing the Russian government. These administrators had built substantial positions in these scrips prior to the circulation of recommendations and offloaded their positions subsequent to rise in price of these scrips, making significant profits at the expense of unsuspecting investors, Sebi noted. Anastasia Vlasova/Getty Images
from in


Telegram Machinelearning
FROM American