⚡️ FAANG software engineer рассказал, как на самом деле выглядит «vibe coding» в FAANG
Спойлер: это не просто сидеть и писать код с ИИ. Большая часть работы происходит до того, как ты вообще откроешь редактор.
Как это выглядит на практике:
1. Technical Design Doc
Всё начинается с дизайн-документа. Это proposal, где ты доказываешь, что идея имеет смысл. Нужно согласие стейкхолдеров, команд и архитекторов. Здесь делается львиная доля работы.
2. Design Review
Дизайн-док проходит жёсткий разбор у senior-инженеров. Документ буквально «разрывают». И это нормально - боль просто переносят в начало, чтобы потом не чинить продакшн.
3. Детализация подсистем
После одобрения дизайн-дока команды несколько недель дописывают документацию по каждому подсервису и компоненту.
4. Backlog и спринты
Dev, PM и TPM вместе дробят систему на конкретные задачи и выстраивают порядок их реализации.
5. Разработка (вот тут появляется vibe coding)
Только теперь начинается кодинг. Используется TDD:
- сначала ИИ-агент пишет тесты
- затем тот же агент помогает реализовать фичу
ИИ здесь не замена инженеру, а мощный ускоритель.
6. Code Review
Перед мержем нужно одобрение двух разработчиков. ИИ всё чаще помогает и на этапе ревью.
7. Staging и production
Сначала тесты и проверка в staging. Если всё ок - деплой в прод.
Главный вывод:
В FAANG «vibe coding» работает только потому, что вокруг него стоит жёсткая инженерная дисциплина, дизайн-доки и процессы.
ИИ ускоряет выполнение задач, но не отменяет системное мышление и архитектуру.
reddit.com/r/vibecoding/comments/1myakhd/how_we_vibe_code_at_a_faang/
Спойлер: это не просто сидеть и писать код с ИИ. Большая часть работы происходит до того, как ты вообще откроешь редактор.
Как это выглядит на практике:
1. Technical Design Doc
Всё начинается с дизайн-документа. Это proposal, где ты доказываешь, что идея имеет смысл. Нужно согласие стейкхолдеров, команд и архитекторов. Здесь делается львиная доля работы.
2. Design Review
Дизайн-док проходит жёсткий разбор у senior-инженеров. Документ буквально «разрывают». И это нормально - боль просто переносят в начало, чтобы потом не чинить продакшн.
3. Детализация подсистем
После одобрения дизайн-дока команды несколько недель дописывают документацию по каждому подсервису и компоненту.
4. Backlog и спринты
Dev, PM и TPM вместе дробят систему на конкретные задачи и выстраивают порядок их реализации.
5. Разработка (вот тут появляется vibe coding)
Только теперь начинается кодинг. Используется TDD:
- сначала ИИ-агент пишет тесты
- затем тот же агент помогает реализовать фичу
ИИ здесь не замена инженеру, а мощный ускоритель.
6. Code Review
Перед мержем нужно одобрение двух разработчиков. ИИ всё чаще помогает и на этапе ревью.
7. Staging и production
Сначала тесты и проверка в staging. Если всё ок - деплой в прод.
Главный вывод:
В FAANG «vibe coding» работает только потому, что вокруг него стоит жёсткая инженерная дисциплина, дизайн-доки и процессы.
ИИ ускоряет выполнение задач, но не отменяет системное мышление и архитектуру.
reddit.com/r/vibecoding/comments/1myakhd/how_we_vibe_code_at_a_faang/
❤93🔥39👍23🥱8🥰5🌭2🦄2
This media is not supported in your browser
VIEW IN TELEGRAM
Впервые Tetris сыграли буквально в небе - фигуры собирались из тысяч дронов и менялись в реальном времени в ответ на действия игроков.
В воздух поднимались более 2 800 дронов одновременно, а всего в шоу участвовало около 4 000. Они формировали знакомые тетромино, линии и анимации, превращая классическую игру в гигантскую живую инсталляцию.
В турнире приняли участие игроки из 60 стран. Победителем стал 19-летний студент из Турции Фехми Аталар. Он набрал 168 566 очков и стал первым в истории официальным чемпионом мира по Tetris.
Шоу было приурочено к 40-летию игры и установило рекорд как крупнейшая уличная инсталляция Tetris. Отличный пример того, как культовая игра может получить вторую жизнь благодаря технологиям.
@ai_machinelearning_big_data
#RedBullTetrisWorldFinal #RedBullTetrisChampion
Please open Telegram to view this post
VIEW IN TELEGRAM
👍73❤22🔥19🥰10🙉3🦄2👾2🎉1
Американское издание Marktechpost выкатило доклад ML Global Impact Report 2025, который охватывает исследования из более чем 125 стран мира. В число самых популярных ML-инструментов в исследованиях вошла российская технология CatBoost.
CatBoost, который изначально создавался для Поиска Яндекса, сегодня используется в каждой 30-й статье с применением ML учеными из 51 страны, включая США, Китай, Саудовскую Аравию и другие. В частности, на США приходится 13% статей с использованием CatBoost, среди авторов работ — исследователи из Harvard University, Massachusetts Institute of Technology и Stanford University.
В числе основных отраслей применения — медицина и прикладные науки:
- прогнозирование рецидивов рака печени
- обнаружение рака молочной железы
- ранняя диагностика болезни Альцгеймера
- оценка риска преждевременных родов
- индекс качества воды
- расчет спроса на зарядку электромобилей
- борьба с ботами в социальных сетях.
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍131🔥44❤21🥱9🤣6😁3🏆1🦄1
Ключевые характеристики:
- MoE-архитектура: 30B параметров всего, ~3.5B активных
- Контекст до 1 миллиона токенов
- Гибридная архитектура:
- 23 слоя Mamba-2 + MoE
- 6 attention-слоёв
- Баланс между скоростью и качеством рассуждений
Требования:
- необходимо около 24 ГБ видеопамяти для локального запуска
Модель хорошо подходит для длинных диалогов, анализа документов и reasoning-задач
Интересный пример того, как MoE и Mamba начинают реально снижать требования к железу, сохраняя масштаб контекста и качество.
Для обучения Super и Ultra используется NVFP4 и новая архитектура Latent Mixture of Experts. Она позволяет задействовать в четыре раза больше экспертов при той же стоимости инференса. По сути, модель становится «умнее» за счёт более гибкого выбора экспертов, а не за счёт постоянной активации всех параметров.
Дополнительно применяется Multi-Token Prediction, что ускоряет обучение и улучшает качество рассуждений на длинных последовательностях. Это особенно важно для agentic и multi-agent сценариев, где модели работают с длинным контекстом и сложными цепочками решений.
NVIDIA публикует не только веса, но и данные для предобучения и постобучения, а также технические детали, которые объясняют, почему эти модели одновременно быстрые и сильные.
Такой уровень открытости - редкость для моделей этого масштаба и хороший сигнал для индустрии.@ai_machinelearning_big_data
#AI #LLM #NVIDIA #Nemotron3 #OpenSource #MachineLearning
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥48❤21👍20🦄3👌2
Владимир Кувшинов создал систему, которая сама следит за прогнозными моделями и подсказывает, когда нужно вмешательство. На данный момент ИИ прогнозирует содержание металлов на 59 точках технологической цепочки — на каждой минимум по две модели.
Модели, которые разработал студент позволяют повысить извлечение полезного металла всего на несколько десятых процента. Однако, из-за масштабов производства, такое небольшое улучшение помогает экономить до 60 млн рублей в год только на одной фабрике.
Студент собрал решение полностью самостоятельно: от базы данных до интерфейса. Система уже тестируется на производстве и показывает точность прогнозов в пределах 5%.
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍113🤣46🔥26🦄12❤6🗿5🤬3😁2💯2💘1
SHARP - это исследовательский проект Apple, который умеет создавать фотореалистичные новые ракурсы сцены, имея всего одну фотографию.
Нейросеть за один проход предсказывает 3D-сцены в виде гауссианов.
Полученную 3D-сцену можно:
- рендерить в реальном времени
- получать высококачественные изображения с близких ракурсов
- двигать камеру в реальных метрических координатах
Главные фишки:
- используется метрическое 3D-представление с абсолютным масштабом
- поддерживаются реальные движения камеры
- модель работает zero-shot, без дообучения на новых датасетах
Модель устанавливает новый уровень качества сразу на нескольких наборах данных:
- метрика LPIPS улучшена на 25–34%
- метрика DISTS улучшена на 21–43% по сравнению с лучшими предыдущими моделями
При этом время генерации снижено в тысячи раз.
SHARP показывает, насколько далеко продвинулись методы 3D-реконструкции и view synthesis — и как быстро такие технологии начинают работать в реальном времени, а не только в лаборатории.
▪Github: https://github.com/apple/ml-sharp
▪HF: https://huggingface.co/apple/Sharp
▪ Демки: https://apple.github.io/ml-sharp/
@ai_machinelearning_big_data
#apple #llm #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍47❤14🦄5🔥3
Media is too big
VIEW IN TELEGRAM
В ноябре 2025 года OpenAI выпустила приложение Sora для Android, пройдя путь от прототипа до глобального релиза всего за 1 месяц. Над проектом работали 4 инженера и ранняя версия GPT-5.1-Codex.
Результаты эксперимента показали новый стандарт эффективности: 85% кода было сгенерировано ИИ, при этом стабильность версии держалась на уровне 99,9%.
В первые сутки Sora для Android возглавило чарты Play Store, а пользователи создали более миллиона видео. В OpenAI отмечают, что ИИ-ассистенты берут на себя рутину, однако архитектурное проектирование и контроль качества по-прежнему требуют участия людей.
openai.com
Thinking Machines открыл глобальный доступ к своей платформе Tinker, который предоставляет услуги дообучения LLM методом LoRA. Сервис пополнился моделью Kimi K2 Thinking и интерфейсом, совместимым с OpenAI API.
Также были добавлены возможности визуального ввода с помощью моделей Qwen3-VL, позволяющие обрабатывать изображения и текст вместе.
thinkingmachines.ai
Google открыла доступ к функции потокового перевода речи для любых наушников, подключенных к Android-устройству. Ранее эта технология была доступна только владельцам Pixel Buds, но теперь аппаратные ограничения сняты.
За качество обработки отвечает новая модель Gemini 2.5 Flash Native Audio. Она поддерживает более 70 языков и умеет сохранять оригинальный тон, темп и ритм говорящего, делая синтезированную речь максимально естественной. Благодаря расширенной базе знаний модель понимает сленг и культурные нюансы в реальном времени.
blog.google
Исследователи из Стэнфорда опубликовали результаты тестирования ИИ-агента ARTEMIS, который обошел 9 из 10 людей-экспертов по кибербезопасности. При эксплуатационной стоимости около $18 в час система показала не только экономическую эффективность, но и техническое преимущество в скорости.
За 16 часов работы ARTEMIS просканировал 8000 устройств, запуская субагентов для параллельной атаки множества целей. Он выявил уязвимости, которые пропустили люди, в том числе на устаревших серверах, недоступных через обычные браузеры.
В первые 10 часов агент обнаружил 9 валидных брешей с показателем успешности 82%. Разработчики признают, что ИИ идеально справляется с парсингом кода и логов, но работа с графическими интерфейсами пока остается его слабым местом, иногда приводя к ложным срабатываниям.
businessinsider.com
CEO гиганта литографии заявил о готовности поддерживать рост индустрии ИИ в течение следующих 10–15 лет. Главным вектором развития станет переход от текущего стандарта EUV к технологии с высокой числовой апертурой (High-NA EUV), которая необходима для создания следующего поколения микросхем.
Массовое коммерческое внедрение High-NA EUV запланировано на 2027–2028 годы. Эти сроки коррелируют с требованиями ключевых клиентов, ставящих цель увеличивать плотность транзисторов в 16 раз каждые 2 года.
Чтобы обеспечить такую масштабируемость, ASML сфокусируется на улучшении 3 параметров: разрешения, точности позиционирования и общей производительности установок.
bloomberg.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
❤32👍15🔥9🥰4🦄3🤣2
Forwarded from ТЕХНО: Яндекс про технологии
📋 ИИ не понимает, что вы от него хотите? Чтобы ответы нейросети были более предсказуемыми и чёткими, попробуйте добавить промптам структуру — сейчас расскажем как. А если инструкция покажется слишком сложной, листайте до конца — там объясняем, как структурировать промпты в два клика.
Зачем структурировать промпт
ИИ легко интерпретирует информацию в простых запросах, но если вводные будут очень длинными и сложными, модель может ошибиться в их понимании. Чтобы этого не случилось, текст промпта можно структурировать, сразу указав, где какие данные.
Как структурировать промпт
Создатели нейросетей предлагают использовать специальную разметку, которую понимает ИИ. Это могут быть:
🟢 Markdown, разметка для форматирования текста. Для промптинга можно использовать маркированные и нумерованные списки, а также знак «#», который в markdown означает заголовки разного уровня, а в запросе определяет иерархию задач.
🟢 XML-теги, обозначающие границы какого-либо текстового элемента. Начало и конец элемента обозначаются метками <тег> и </тег>, а сами теги могут быть любыми.
🟢 JSON, стандарт структурирования данных, позволяющий с помощью несложного синтаксиса разметить любую информацию в промпте.
Кажется, разметка — это сложно
Если не хочется разбираться с Markdown, XML и JSON, можно показать ваш промпт нейросети и попросить, чтобы она сама добавила разметку, не меняя суть. А ещё можно найти готовый промпт под свою задачу на Промптхабе — во многих из них используется Markdown-разметка.
Подписывайтесь 👉 @techno_yandex
Зачем структурировать промпт
ИИ легко интерпретирует информацию в простых запросах, но если вводные будут очень длинными и сложными, модель может ошибиться в их понимании. Чтобы этого не случилось, текст промпта можно структурировать, сразу указав, где какие данные.
Как структурировать промпт
Создатели нейросетей предлагают использовать специальную разметку, которую понимает ИИ. Это могут быть:
# Задание
Составь план празднования дня рождения для компании из 8 человек.
## Ограничения
- Бюджет: 10 000 рублей
- Локация: дома
- Среди гостей есть вегетарианцы
## Что должно быть в плане
### 1. Меню
- Основные блюда
- Закуски
- Напитки
### 2. Развлечения
- Игры
- Музыка
- Активности
### 3. Тайминг мероприятия
<цель>Составить недельное меню для семьи из 3 человек</цель>
<ограничения>
<бюджет>10 000 рублей</бюджет>
<предпочтения>больше овощей, минимум жареного, суп каждый день</предпочтения>
<исключить>грибы, орехи, морепродукты, мёд</исключить>
</ограничения>
<формат>
<приёмы_пищи>завтрак, обед, ужин, перекус</приёмы_пищи>
<описание>подробный рецепт каждого блюда со списком ингредиентов</описание>
</формат>
{
"задание": "Составь список покупок на неделю",
"параметры": {
"количество_людей": 2,
"предпочтения": ["вегетарианское", "минимум сахара"],
"бюджет": "до 10 000 рублей"
},
"категории": [
"овощи и фрукты",
"крупы и макароны",
"молочные продукты",
"напитки",
"другое"
],
"формат_ответа": {
"тип": "список",
"сгруппировать_по_категориям": true
}
}
Кажется, разметка — это сложно
Если не хочется разбираться с Markdown, XML и JSON, можно показать ваш промпт нейросети и попросить, чтобы она сама добавила разметку, не меняя суть. А ещё можно найти готовый промпт под свою задачу на Промптхабе — во многих из них используется Markdown-разметка.
Подписывайтесь 👉 @techno_yandex
Please open Telegram to view this post
VIEW IN TELEGRAM
👍33🤣18❤10🔥5🦄3
This media is not supported in your browser
VIEW IN TELEGRAM
Google запустила в публичное превью платформу Code Wiki. Инструмент сканирует репозиторий и генерирует живую базу знаний, которая перестраивается автоматически после каждого изменения в коде.
Под капотом -
Code Wiki умеет строить диаграммы архитектуры, объяснять логику работы модулей и мгновенно перенаправлять из вики к конкретным определениям функций.
Сейчас веб-версия работает с публичными репозиториями, но в планах - CLI-расширение для развертывания системы в закрытых корпоративных контурах.
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍91❤17🔥14🦄2🌭1
Шейн Легг, сооснователь и главный AGI-сайентист Google DeepMind в свежем видео-подкасте предлагает понятие "минимального AGI".
Это не обязательно "божественный сверхразум", а агент, способный выполнять когнитивные задачи, типичные для человека.
С одной стороны, топовые модели уже владеют 100–150 языками и обладают феноменальной общей эрудицией, зная детали о городах в Новой Зеландии.
С другой стороны, они спотыкаются на базовых вещах, доступных любому ребенку.
Например, в задачах на визуальное мышление модели путаются в перспективе: они могут не понять, что синяя машина на картинке больше красной, просто потому что она находится ближе.
Другой пример - работа с диаграммами: если попросить ИИ посчитать количество ребер, выходящих из узла на графе, он часто ошибается, так как не умеет внимательно пересчитывать объекты так, как это делает человек.
Человеческий мозг - это устройство весом чуть больше килограмма, потребляющее около 20 ватт энергии. Сигналы в нем передаются посредством электрохимических реакций со скоростью примерно 30 метров в секунду, а частота работы нейронов составляет всего около 100 герц.
Сравните это с современным дата-центром: это сооружение весом в сотни тонн, потребляющее 200 мегаватт. Сигналы там "бегают" со скоростью света, а тактовая частота процессоров достигает 10 млрд. герц.
Разница в масштабах — это десятки порядков сразу по нескольким измерениям: энергопотреблению, объему, пропускной способности и скорости. Поэтому считать человеческий интеллект верхним пределом возможного было бы ошибкой.
Критическим барьером остается непрерывное обучение. Люди, приходя на новую работу, не обязаны знать все сразу - они учатся в процессе.
Современный ИИ представляет собой статичные объекты после тренировки. Чтобы это изменить, потребуются архитектурные инновации, например, внедрение систем эпизодической памяти, которые позволят модели запоминать новый опыт и дообучаться на нем в реальном времени, не забывая старое.
В ближайшие годы мы увидим переход от ИИ как инструмента к агентным системам, способным самостоятельно планировать и выполнять сложные цепочки действий, например, написать ПО или спланировать поездку "под ключ".
ИИ не должен просто реагировать инстинктивно; он должен демонстрировать цепочку рассуждений, которую можно промониторить. Это дает возможность проверить, почему модель приняла то или иное этически сложное решение — например, солгать злоумышленнику, чтобы спасти чью-то жизнь.
Если мы сможем видеть этот скрытый процесс размышления, доверие к системе вырастет. Это станет критически важным, когда ИИ начнет трансформировать рынок труда: например, в сфере разработки ПО, где вместо команды из 100 инженеров для той же работы может потребоваться всего 20 специалистов, использующих продвинутые инструменты.
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
😁34❤17🔥16🥱6👍5🤔1🤗1🦄1
