Telegram Group & Telegram Channel
Решил разобрать детальнее статейку парней из Tinkoff Research — ReBRAC: Revisiting the Minimalist Approach to Offline Reinforcement Learning, которая была опубликована на NeurIPS в этом году.

Речь пойдет об Offline Reinforcement Learning. Это когда у агента нет доступа к энвайроменту, и он должен тренироваться на предписанном датасете. Это как если бы вы учились играть в Доту, только смотря реплеи и VOD-ы других игроков, но сами бы никогда не пробовали играть. Вот это и есть Offline RL.

Один из популярных методов для Offline RL — это Behavior-Regularized Actor-Critic (BRAC). Если в двух словах, то актор - это сеть, которая принимает решения о действиях агента в разных ситуациях. А критик оценивает действия, выполненные актером, и дает обратную связь о том, насколько хороши или плохи были эти действия. Важным дополнением здесь является, что актор в BRAC, в отличии от online-RL, старается выбирать действия близкие к датасету — это еще называют консервативностью.

Суть статьи в том, что авторы взяли этот минималистичный бейзлайн, Actor-Critic алгоритм, и накачали его стероидами в виде разных трюков, да так что он превратился из слабенького бейзлайна в очень сильный подход, который выдает результат на уровне гораздо более сложных специализированных подходов.

А теперь более детально. Дело в том что, часто в статьях ученые используют всевозможные мелкие трюки, на которых не акцентируют внимание, но которые по сути очень много добавляют к перформансу на практике. Авторы ReBRAC взяли основные трюки и провели детальный анализ влияния каждого из них, и затюнили их для алгоритма Actor-Critic:
- Большая глубина сети: почему-то в литературе до этого в основном использовали MLP c 2-мя скрытыми слоями. Очень странно, ведь это крошечная сетка.
- LayerNorm — полезно вставлять между слоями. Помогает критику преодолеть оверконсервативность.
- Батчи по-больше — всегда хорошо для повышения стабильности тренировки.
- Разная константа в MSE-регуляризации актера и критика.
- Увеличенный дискаунт-фактор для реворда — помогает когда реворд-сигнал довольно жидкий.

После этого оказалось, что даже такой простой алгоритм достиг уровня SOTA, и теперь его можно использовать как очень сильную отправную точку для всех дальнейших исследований в Offline RL.

Мораль такова, что маленькие детали имеют большое значение! Побольше бы таких статей с трюками в других областях, жаль что такое редко публикуется — все держат свои трюки при себе.

@ai_newz



group-telegram.com/ai_newz/2350
Create:
Last Update:

Решил разобрать детальнее статейку парней из Tinkoff Research — ReBRAC: Revisiting the Minimalist Approach to Offline Reinforcement Learning, которая была опубликована на NeurIPS в этом году.

Речь пойдет об Offline Reinforcement Learning. Это когда у агента нет доступа к энвайроменту, и он должен тренироваться на предписанном датасете. Это как если бы вы учились играть в Доту, только смотря реплеи и VOD-ы других игроков, но сами бы никогда не пробовали играть. Вот это и есть Offline RL.

Один из популярных методов для Offline RL — это Behavior-Regularized Actor-Critic (BRAC). Если в двух словах, то актор - это сеть, которая принимает решения о действиях агента в разных ситуациях. А критик оценивает действия, выполненные актером, и дает обратную связь о том, насколько хороши или плохи были эти действия. Важным дополнением здесь является, что актор в BRAC, в отличии от online-RL, старается выбирать действия близкие к датасету — это еще называют консервативностью.

Суть статьи в том, что авторы взяли этот минималистичный бейзлайн, Actor-Critic алгоритм, и накачали его стероидами в виде разных трюков, да так что он превратился из слабенького бейзлайна в очень сильный подход, который выдает результат на уровне гораздо более сложных специализированных подходов.

А теперь более детально. Дело в том что, часто в статьях ученые используют всевозможные мелкие трюки, на которых не акцентируют внимание, но которые по сути очень много добавляют к перформансу на практике. Авторы ReBRAC взяли основные трюки и провели детальный анализ влияния каждого из них, и затюнили их для алгоритма Actor-Critic:
- Большая глубина сети: почему-то в литературе до этого в основном использовали MLP c 2-мя скрытыми слоями. Очень странно, ведь это крошечная сетка.
- LayerNorm — полезно вставлять между слоями. Помогает критику преодолеть оверконсервативность.
- Батчи по-больше — всегда хорошо для повышения стабильности тренировки.
- Разная константа в MSE-регуляризации актера и критика.
- Увеличенный дискаунт-фактор для реворда — помогает когда реворд-сигнал довольно жидкий.

После этого оказалось, что даже такой простой алгоритм достиг уровня SOTA, и теперь его можно использовать как очень сильную отправную точку для всех дальнейших исследований в Offline RL.

Мораль такова, что маленькие детали имеют большое значение! Побольше бы таких статей с трюками в других областях, жаль что такое редко публикуется — все держат свои трюки при себе.

@ai_newz

BY эйай ньюз




Share with your friend now:
group-telegram.com/ai_newz/2350

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The SC urges the public to refer to the SC’s I nvestor Alert List before investing. The list contains details of unauthorised websites, investment products, companies and individuals. Members of the public who suspect that they have been approached by unauthorised firms or individuals offering schemes that promise unrealistic returns "Russians are really disconnected from the reality of what happening to their country," Andrey said. "So Telegram has become essential for understanding what's going on to the Russian-speaking world." Messages are not fully encrypted by default. That means the company could, in theory, access the content of the messages, or be forced to hand over the data at the request of a government. Stocks closed in the red Friday as investors weighed upbeat remarks from Russian President Vladimir Putin about diplomatic discussions with Ukraine against a weaker-than-expected print on U.S. consumer sentiment. In 2018, Russia banned Telegram although it reversed the prohibition two years later.
from in


Telegram эйай ньюз
FROM American