Telegram Group & Telegram Channel
Сейчас будет пост для новичков и повод вспомнить былое для старичков. 

Зачем ученым нужен AI? 


Тут мой бывший преподаватель по алгоритмам из Школы анализа данных в Минске, а ныне руководитель всего ШАДа Алексей Толстиков написал небольшое эссе на эту тему и собрал пару юзкейсов из академии. 

Кроме всяких чатов GPT, и Copilot'ов, помогающих писать код, машинное обучение уже давно используется в науке. Например, бозон Хиггса еще в 2012 году открыли с помощью ML (хоть и классического). Модели кормили килотоннами данных с датчиков, пока они искали какие-то необычные паттерны.

Самый известный на сегодняшний день пример, пожалуй, — AlphaFold, который предсказывает трехмерную структуру белков. Этот инструмент открыл множество новых комбинаций, за что и получил Нобелевскую премию. 

В таких задачах людям пришлось бы годами разбираться в бесконечных датасетах и графиках. Нейросети здесь незаменимы, особенно когда дело доходит до эмпирического вывода закономерностей — первого шага к построению полноценной теории или законов. 

Кстати, ШАД тоже занимается разработкой ИИ-моделей для научных задач.. Например, там собрали нейронку для предсказания распространения вулканического пепла в атмосфере. Это помогает заранее подготовиться к выпадению пепла и и минимизировать риски для людей и инфраструктуры. Такие риски есть, например, на Камчатке и в других регионах с активными вулканами. 

Технологии ИИ в науке начали применять еще давно. Например, с помощью модели Morpheus астрономы с 2020 года анализируют космическое небо в поисках экзопланет  Однако рядовой астроном или биолог вряд ли соберет AlphaFold, а обычный ML-щик без биолога тоже не справится. Поэтому ML-специалисты нужны везде! 

Вообще, междисциплинарный ресерч — это топ (я и сам начинал PhD с интердисциплинарного проекта с историей искусств). У нас уже есть Нобелевские премии по физике и химии, а еще осталась куча дисциплин, где использование AI еще не получило такого большого признания. Кто знает, может, следующая будет по истории? Например, за расшифровку каких-нибудь древних рун.

@ai_newz



group-telegram.com/ai_newz/3490
Create:
Last Update:

Сейчас будет пост для новичков и повод вспомнить былое для старичков. 

Зачем ученым нужен AI? 


Тут мой бывший преподаватель по алгоритмам из Школы анализа данных в Минске, а ныне руководитель всего ШАДа Алексей Толстиков написал небольшое эссе на эту тему и собрал пару юзкейсов из академии. 

Кроме всяких чатов GPT, и Copilot'ов, помогающих писать код, машинное обучение уже давно используется в науке. Например, бозон Хиггса еще в 2012 году открыли с помощью ML (хоть и классического). Модели кормили килотоннами данных с датчиков, пока они искали какие-то необычные паттерны.

Самый известный на сегодняшний день пример, пожалуй, — AlphaFold, который предсказывает трехмерную структуру белков. Этот инструмент открыл множество новых комбинаций, за что и получил Нобелевскую премию. 

В таких задачах людям пришлось бы годами разбираться в бесконечных датасетах и графиках. Нейросети здесь незаменимы, особенно когда дело доходит до эмпирического вывода закономерностей — первого шага к построению полноценной теории или законов. 

Кстати, ШАД тоже занимается разработкой ИИ-моделей для научных задач.. Например, там собрали нейронку для предсказания распространения вулканического пепла в атмосфере. Это помогает заранее подготовиться к выпадению пепла и и минимизировать риски для людей и инфраструктуры. Такие риски есть, например, на Камчатке и в других регионах с активными вулканами. 

Технологии ИИ в науке начали применять еще давно. Например, с помощью модели Morpheus астрономы с 2020 года анализируют космическое небо в поисках экзопланет  Однако рядовой астроном или биолог вряд ли соберет AlphaFold, а обычный ML-щик без биолога тоже не справится. Поэтому ML-специалисты нужны везде! 

Вообще, междисциплинарный ресерч — это топ (я и сам начинал PhD с интердисциплинарного проекта с историей искусств). У нас уже есть Нобелевские премии по физике и химии, а еще осталась куча дисциплин, где использование AI еще не получило такого большого признания. Кто знает, может, следующая будет по истории? Например, за расшифровку каких-нибудь древних рун.

@ai_newz

BY эйай ньюз




Share with your friend now:
group-telegram.com/ai_newz/3490

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The S&P 500 fell 1.3% to 4,204.36, and the Dow Jones Industrial Average was down 0.7% to 32,943.33. The Dow posted a fifth straight weekly loss — its longest losing streak since 2019. The Nasdaq Composite tumbled 2.2% to 12,843.81. Though all three indexes opened in the green, stocks took a turn after a new report showed U.S. consumer sentiment deteriorated more than expected in early March as consumers' inflation expectations soared to the highest since 1981. Since January 2022, the SC has received a total of 47 complaints and enquiries on illegal investment schemes promoted through Telegram. These fraudulent schemes offer non-existent investment opportunities, promising very attractive and risk-free returns within a short span of time. They commonly offer unrealistic returns of as high as 1,000% within 24 hours or even within a few hours. The Security Service of Ukraine said in a tweet that it was able to effectively target Russian convoys near Kyiv because of messages sent to an official Telegram bot account called "STOP Russian War." If you initiate a Secret Chat, however, then these communications are end-to-end encrypted and are tied to the device you are using. That means it’s less convenient to access them across multiple platforms, but you are at far less risk of snooping. Back in the day, Secret Chats received some praise from the EFF, but the fact that its standard system isn’t as secure earned it some criticism. If you’re looking for something that is considered more reliable by privacy advocates, then Signal is the EFF’s preferred platform, although that too is not without some caveats. That hurt tech stocks. For the past few weeks, the 10-year yield has traded between 1.72% and 2%, as traders moved into the bond for safety when Russia headlines were ugly—and out of it when headlines improved. Now, the yield is touching its pandemic-era high. If the yield breaks above that level, that could signal that it’s on a sustainable path higher. Higher long-dated bond yields make future profits less valuable—and many tech companies are valued on the basis of profits forecast for many years in the future.
from in


Telegram эйай ньюз
FROM American