Telegram Group & Telegram Channel
С чего начать, если планируете внедрять ИИ в компании, и почему ключевой аспект здесь - Data/AI maturity? 📊

Давайте для начала решим вопрос: почему для компаний почти всех индустрий тема данных и ИИ сейчас так важны?

Технология прогрессирует всё быстрее и быстрее. Технологические трансформации приходят волнами, и несмотря на то, что в данный момент между каждой волной проходит 3-5 лет, это расстояние в будущем будет сильно сокращаться. Каждая волна предоставляет компаниям возможность выстроить конкурентное преимущество или рискнуть возможно невозвратно отстать от конкурентов. CEO Databricks, Али Годси, предсказал, что в долгосрочной перспективе (~10 лет) во всех индустриях лидеры с конкурентным преимуществом будут ориентированы на данные и AI. Считается, что Data/AI-driven компании способны увеличить доход на 15-25%.
[Как мы обсудим в одном из будущих постов, сами по себе данные и ИИ не являются гарантией успеха - есть определенные условия, от наличия которых зависит, принесет ли ваш проект на основе данных и ИИ прибыль или будет провалом!]

Зная, зачем нужна AI-трансформация, появляется следующий вопрос – с чего начать этот процесс? Первые шаги к AI-трансформации всегда должны быть следующими:
1️⃣оценка Data/AI maturity (где компания сейчас?) и
2️⃣формирование стратегических целей C-level лидеров (до куда компания хочет дойти?).

Каждый бизнес, продукт или проект проходят через разные стадии Data/AI зрелости. Это значит, что в начинающих уровнях данные собираются ещё не системно и без особой отдачи - но со временем через вклад инженеров инфраструктура и сбор данных становятся более «зрелыми» и обеспечивают более продвинутые ML модели.

Большинство legacy компаний в данный момент находятся на уровне 1 или уровне 2 (AI interest & experimentation), как подчеркивает статистика от Accenture на скриншоте. Кроме этого legacy компании часто сильно переоценивают количество и качество своих данных, а также возможности своей инфраструктуры. Большинство компаний сегодня вообще не в состоянии продвинуться дальше уровня 3 (AI частично в проде). [Как взяться за инфраструктуру и какие аспекты важны, чтобы обеспечить эффективные продукты на основе данных и ИИ, я буду освещать в отдельном посте.]

Суть модели Data/AI maturity заключается в оценке текущих способностей компании в области данных/ИИ и обозначении потенциального дальнейшего пути в процессе ИИ-трансформации.

При этом важно понимать, что далеко не каждая компания обязана проходить все стадии Data/AI зрелости. Фундаментально важно, чтобы руководство компании формулировало vision и конкретные бизнес-цели чтобы потом в коллаборации с техническими стратегами обеспечить связь между технологической цепью и бизнес-value. Этот элемент как раз часто не присутствует в многих компаниях и приводит к разочаровывающим результатам. Целевая Data/AI maturity всегда должна быть оправдана отдачей!

В ближайшем посте я поделюсь с вами оценкой, которая поможет вам оценить зрелость данных/ИИ в вашей компании - stay tuned!

Если компания решила продвигаться по оси Data/AI maturity и инвестировать в развитие ИИ на основе стратегических решений, инвесторы и руководство фирмы будут ожидать быстрых и постепенных результатов от инициативы. Это значит, что правление компании, которая условно в первом квартале проинвестировало в Data/AI проекты, требует быть в состоянии показывать отдачу уже во втором или третьем квартале. Таковы правила игры в нынешних реалиях.

Как обеспечить это и почему в прошлом около 87% Data Science проектов в компаниях были провалом, мы обсудим также скоро!

#datapm #aipm #strategy
@ainastia
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/ainastia/24
Create:
Last Update:

С чего начать, если планируете внедрять ИИ в компании, и почему ключевой аспект здесь - Data/AI maturity? 📊

Давайте для начала решим вопрос: почему для компаний почти всех индустрий тема данных и ИИ сейчас так важны?

Технология прогрессирует всё быстрее и быстрее. Технологические трансформации приходят волнами, и несмотря на то, что в данный момент между каждой волной проходит 3-5 лет, это расстояние в будущем будет сильно сокращаться. Каждая волна предоставляет компаниям возможность выстроить конкурентное преимущество или рискнуть возможно невозвратно отстать от конкурентов. CEO Databricks, Али Годси, предсказал, что в долгосрочной перспективе (~10 лет) во всех индустриях лидеры с конкурентным преимуществом будут ориентированы на данные и AI. Считается, что Data/AI-driven компании способны увеличить доход на 15-25%.
[Как мы обсудим в одном из будущих постов, сами по себе данные и ИИ не являются гарантией успеха - есть определенные условия, от наличия которых зависит, принесет ли ваш проект на основе данных и ИИ прибыль или будет провалом!]

Зная, зачем нужна AI-трансформация, появляется следующий вопрос – с чего начать этот процесс? Первые шаги к AI-трансформации всегда должны быть следующими:
1️⃣оценка Data/AI maturity (где компания сейчас?) и
2️⃣формирование стратегических целей C-level лидеров (до куда компания хочет дойти?).

Каждый бизнес, продукт или проект проходят через разные стадии Data/AI зрелости. Это значит, что в начинающих уровнях данные собираются ещё не системно и без особой отдачи - но со временем через вклад инженеров инфраструктура и сбор данных становятся более «зрелыми» и обеспечивают более продвинутые ML модели.

Большинство legacy компаний в данный момент находятся на уровне 1 или уровне 2 (AI interest & experimentation), как подчеркивает статистика от Accenture на скриншоте. Кроме этого legacy компании часто сильно переоценивают количество и качество своих данных, а также возможности своей инфраструктуры. Большинство компаний сегодня вообще не в состоянии продвинуться дальше уровня 3 (AI частично в проде). [Как взяться за инфраструктуру и какие аспекты важны, чтобы обеспечить эффективные продукты на основе данных и ИИ, я буду освещать в отдельном посте.]

Суть модели Data/AI maturity заключается в оценке текущих способностей компании в области данных/ИИ и обозначении потенциального дальнейшего пути в процессе ИИ-трансформации.

При этом важно понимать, что далеко не каждая компания обязана проходить все стадии Data/AI зрелости. Фундаментально важно, чтобы руководство компании формулировало vision и конкретные бизнес-цели чтобы потом в коллаборации с техническими стратегами обеспечить связь между технологической цепью и бизнес-value. Этот элемент как раз часто не присутствует в многих компаниях и приводит к разочаровывающим результатам. Целевая Data/AI maturity всегда должна быть оправдана отдачей!

В ближайшем посте я поделюсь с вами оценкой, которая поможет вам оценить зрелость данных/ИИ в вашей компании - stay tuned!

Если компания решила продвигаться по оси Data/AI maturity и инвестировать в развитие ИИ на основе стратегических решений, инвесторы и руководство фирмы будут ожидать быстрых и постепенных результатов от инициативы. Это значит, что правление компании, которая условно в первом квартале проинвестировало в Data/AI проекты, требует быть в состоянии показывать отдачу уже во втором или третьем квартале. Таковы правила игры в нынешних реалиях.

Как обеспечить это и почему в прошлом около 87% Data Science проектов в компаниях были провалом, мы обсудим также скоро!

#datapm #aipm #strategy
@ainastia

BY Anastasia.ai – Tech Entrepreneur in🇨🇭





Share with your friend now:
group-telegram.com/ainastia/24

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The last couple days have exemplified that uncertainty. On Thursday, news emerged that talks in Turkey between the Russia and Ukraine yielded no positive result. But on Friday, Reuters reported that Russian President Vladimir Putin said there had been some “positive shifts” in talks between the two sides. Given the pro-privacy stance of the platform, it’s taken as a given that it’ll be used for a number of reasons, not all of them good. And Telegram has been attached to a fair few scandals related to terrorism, sexual exploitation and crime. Back in 2015, Vox described Telegram as “ISIS’ app of choice,” saying that the platform’s real use is the ability to use channels to distribute material to large groups at once. Telegram has acted to remove public channels affiliated with terrorism, but Pavel Durov reiterated that he had no business snooping on private conversations. "He has to start being more proactive and to find a real solution to this situation, not stay in standby without interfering. It's a very irresponsible position from the owner of Telegram," she said. In February 2014, the Ukrainian people ousted pro-Russian president Viktor Yanukovych, prompting Russia to invade and annex the Crimean peninsula. By the start of April, Pavel Durov had given his notice, with TechCrunch saying at the time that the CEO had resisted pressure to suppress pages criticizing the Russian government. "The result is on this photo: fiery 'greetings' to the invaders," the Security Service of Ukraine wrote alongside a photo showing several military vehicles among plumes of black smoke.
from in


Telegram Anastasia.ai – Tech Entrepreneur in🇨🇭
FROM American