Forwarded from Химия в России и за рубежом (канал ИОНХ РАН)
Сотрудники ИОНХ РАН принимают участие в IV Конгрессе молодых ученых
28 ноября 2024 года на базе научно-технологического университета «Сириус» (г. Сочи) состоялось одно из ключевых мероприятий IV Конгресса молодых ученых - пленарное заседание на тему «Наука для технологического лидерства и ответа на глобальные вызовы: люди, идеи, сотрудничество», модератором которого стал заместитель Председателя Правительства Российской Федерации Дмитрий Чернышенко.
В заседании в качестве спикера принял участие сотрудник Центра цвета ИОНХ РАН, генеральный директор платформы CoLab Лев Краснов, который поделился опытом создания и развития цифрового ресурса для ученых, а также ответил на вопросы модератора.
#инфраструктуранауки #ионх
28 ноября 2024 года на базе научно-технологического университета «Сириус» (г. Сочи) состоялось одно из ключевых мероприятий IV Конгресса молодых ученых - пленарное заседание на тему «Наука для технологического лидерства и ответа на глобальные вызовы: люди, идеи, сотрудничество», модератором которого стал заместитель Председателя Правительства Российской Федерации Дмитрий Чернышенко.
В заседании в качестве спикера принял участие сотрудник Центра цвета ИОНХ РАН, генеральный директор платформы CoLab Лев Краснов, который поделился опытом создания и развития цифрового ресурса для ученых, а также ответил на вопросы модератора.
#инфраструктуранауки #ионх
Forwarded from Химия в России и за рубежом (канал ИОНХ РАН)
Президент России на встрече с участниками IV Конгресса молодых ученых заявил, что основное научное оборудование должно быть отечественным. В ходе встречи аспирант Института общей и неорганической химии им. Н.С. Курнакова @chemrussia Лев Краснов представил платформу CoLab.ws для коммуникации между исследователями и научными группами. Он также рассказал о совместном цифровом сервисе, дающем ученым доступ в режиме «единого окна» к трем платформам – Science-ID, Colab.ws и НАША ЛАБА. Объединение систем позволяет им подбирать решение под необходимый запрос – от мероприятий до оборудования.
«Все, кто работает по этому направлению, добились хороших результатов. У нас сегодня 1800 предприятий предлагают чуть ли не 12 тысяч изделий, реактивов и так далее, отечественных. Между иностранными производителями и продуктами для научного инструментария и отечественными резко изменилось соотношение», – сказал Владимир Путин.
#ионх #инфраструктуранауки
«Все, кто работает по этому направлению, добились хороших результатов. У нас сегодня 1800 предприятий предлагают чуть ли не 12 тысяч изделий, реактивов и так далее, отечественных. Между иностранными производителями и продуктами для научного инструментария и отечественными резко изменилось соотношение», – сказал Владимир Путин.
#ионх #инфраструктуранауки
наука.рф
Colab.ws, НАША ЛАБА и Science-ID презентовали новый совместный цифровой сервис | Новости науки
Главные новости российской науки на официальном сайте Десятилетия науки и технологий в России
Forwarded from Химия в России и за рубежом (канал ИОНХ РАН)
Научный совет по неорганической химии РАН и Научно-образовательный центр ИОНХ РАН приглашают аспирантов и молодых ученых принять участие в работе Первой ежегодной зимней школы по физическим методам исследования неорганических веществ и материалов, которая пройдет с 17 по 21 февраля 2025 г. в Институте общей и неорганической химии им. Н. С. Курнакова РАН в очном формате.
У вас появится уникальная возможность расширить свои знания в передовых методах рентгеноструктурного и рентгенодифракционного анализа, сканирующей электронной микроскопии, молекулярной спектроскопии.
Основное внимание будет уделено современным достижениям в области исследования характеристик неорганических веществ и перспективных материалов применительно к их использованию в различных отраслях – от микроэлектроники до биомедицины.
Число участников ограничено. Стоимость участия в мероприятии – 20 000 рублей с человека.
По завершении школы всем участникам с высшим образованием и средним профессиональным образованием выдаётся удостоверение о повышении квалификации установленного образца.
Для участия необходимо подать заявку в свободной форме в Образовательный центр ИОНХ РАН по e-mail: [email protected]
#ионх #обучение
У вас появится уникальная возможность расширить свои знания в передовых методах рентгеноструктурного и рентгенодифракционного анализа, сканирующей электронной микроскопии, молекулярной спектроскопии.
Основное внимание будет уделено современным достижениям в области исследования характеристик неорганических веществ и перспективных материалов применительно к их использованию в различных отраслях – от микроэлектроники до биомедицины.
Число участников ограничено. Стоимость участия в мероприятии – 20 000 рублей с человека.
По завершении школы всем участникам с высшим образованием и средним профессиональным образованием выдаётся удостоверение о повышении квалификации установленного образца.
Для участия необходимо подать заявку в свободной форме в Образовательный центр ИОНХ РАН по e-mail: [email protected]
#ионх #обучение
Forwarded from Химия в России и за рубежом (канал ИОНХ РАН)
В ИОНХ РАН прошли очередные 82-е Курнаковские чтения
06 декабря 2024 года в Институте общей и неорганической химии им. Н.С. Курнакова РАН состоялись очередные 82-е Курнаковские чтения. Программа мероприятия включала два доклада:
1. чл.-корр. РАН Макаров Алексей Викторович (ИФМ УрО РАН) «Физико-химические аспекты сверхнизкого трения и нового эффекта безызносности в результате короткоимпульсной лазерной обработки сталей».
2. д.х.н. Козюхин Сергей Александрович (ИОНХ РАН) «Фазопеременные халькогенидные полупроводники на современном этапе: тенденции в материаловедении и перспективы практического».
Директор института, чл.-корр. РАН В.К. Иванов поблагодарил участников чтений за интересные доклады, вручил дипломы и медали «Академик Курнаков Николай Семенович».
#ионх
06 декабря 2024 года в Институте общей и неорганической химии им. Н.С. Курнакова РАН состоялись очередные 82-е Курнаковские чтения. Программа мероприятия включала два доклада:
1. чл.-корр. РАН Макаров Алексей Викторович (ИФМ УрО РАН) «Физико-химические аспекты сверхнизкого трения и нового эффекта безызносности в результате короткоимпульсной лазерной обработки сталей».
2. д.х.н. Козюхин Сергей Александрович (ИОНХ РАН) «Фазопеременные халькогенидные полупроводники на современном этапе: тенденции в материаловедении и перспективы практического».
Директор института, чл.-корр. РАН В.К. Иванов поблагодарил участников чтений за интересные доклады, вручил дипломы и медали «Академик Курнаков Николай Семенович».
#ионх
Forwarded from Молекулярная гостиная
50 оттенков оксида кобальта
Современные керамисты добавляют в краску оксид кобальта для создания насыщенного синего цвета. Наложение слоев краски в различных вариациях дает богатую палитру оттенков. Эта техника появилась давно, еще в древние времена и с тех пор не потеряла своей актуальности.
Кобальт был идентифицирован в синей стеклянной лампе из Месопотамии, возраст которой датируется 2000 лет до нашей эры, в синем стекле из Древнего Египта, Сирии и Помпеи. Персидские ремесленники в VIII-XIII веках использовали добавки кобальтовой руды при создания низкотемпературных глазурей. По всей видимости, руда содержала кобальтин CoAsS, серебристо-белый минерал с красноватым оттенком, но чаще черный из-за присутствия железа, или эритрин Co3(AsO4)2•8H2O – минерал малинового цвета.
Позже в Китае во время правления династии Юань (1271 – 1368 гг) мастера из Цзиндэчжэня изобрели новый метод работы с керамикой – теперь фарфор, с нанесенным «кобальтовыми» красками рисунком, обжигали при высокой, более 1200 С, температуре. Китайский синий фарфор стал более доступным и популярным во всем мире в XVII-XVIII веках.
Роспись оксидом кобальта использовали голландские мастера при создании Дельфтского фаянса, а в России «синий кобальт» стал визитной карточкой Гжели.
Фото: Керамистка Фелисити Айлиф использует оксид кобальта для росписи своих гигантских ваз.
Современные керамисты добавляют в краску оксид кобальта для создания насыщенного синего цвета. Наложение слоев краски в различных вариациях дает богатую палитру оттенков. Эта техника появилась давно, еще в древние времена и с тех пор не потеряла своей актуальности.
Кобальт был идентифицирован в синей стеклянной лампе из Месопотамии, возраст которой датируется 2000 лет до нашей эры, в синем стекле из Древнего Египта, Сирии и Помпеи. Персидские ремесленники в VIII-XIII веках использовали добавки кобальтовой руды при создания низкотемпературных глазурей. По всей видимости, руда содержала кобальтин CoAsS, серебристо-белый минерал с красноватым оттенком, но чаще черный из-за присутствия железа, или эритрин Co3(AsO4)2•8H2O – минерал малинового цвета.
Позже в Китае во время правления династии Юань (1271 – 1368 гг) мастера из Цзиндэчжэня изобрели новый метод работы с керамикой – теперь фарфор, с нанесенным «кобальтовыми» красками рисунком, обжигали при высокой, более 1200 С, температуре. Китайский синий фарфор стал более доступным и популярным во всем мире в XVII-XVIII веках.
Роспись оксидом кобальта использовали голландские мастера при создании Дельфтского фаянса, а в России «синий кобальт» стал визитной карточкой Гжели.
Фото: Керамистка Фелисити Айлиф использует оксид кобальта для росписи своих гигантских ваз.
Раскрытие тайны пигментов и техник, использованных при росписи Берлинской стены
Уличное искусство принимает множество форм, и яркие фрески на Берлинской стене как до, так и после ее падения являются выражением мнений людей. Но вокруг процессов создания картин всегда существовала некая таинственность, из-за чего их было трудно сохранить. Исследователи (JACS, 2024📕 ) представили информацию об этом историческом месте из кусочков краски, объединив портативный детектор и анализ данных на основе искусственного интеллекта (ИИ).
Сначала исследователи увеличили фрагменты и заметили, что все они имели два или три слоя краски с видимыми мазками кисти. Третий слой, контактирующий с каменной стеной, выглядел белым, что, по их мнению, является базовым покрытием, используемым традиционно для подготовки стены к покраске. Затем онииспользовали портативный рамановскийспектрометр для анализа фрагментов и сравнили их со спектрами, собранными из коммерческой библиотеки спектров пигментов, и определили основные пигменты в образцах, такие каказопигменты (желтые и красные фрагменты), фталоцианины (синие и зеленые фрагменты), хромат свинца (зеленые фрагменты) и титановые белила (белые фрагменты). Эти результаты были подтверждены другими неразрушающими методами, включая рентгеновскую флуоресценцию и спектроскопию диффузного отражения.
Затем исследователи смешали пигменты из акриловой краски коммерческой марки, используемой в Германии с 19 века, с различными пропорциями титановых белил, пытаясь подобрать цвета и диапазон оттенков, типичных для художников. Используя данные рамановскойспектроскопии, обработанные на компьютере, с помощью алгоритмов машинного обучения был определен процент пигмента. Подход показал, что кусочки краски Берлинской стены содержали титановые белила и до 75% пигмента в зависимости от анализируемого фрагмента и в соответствии с цветовым тоном.
Исследователи говорят, что эти результаты указывают на то, что их модель ИИ может предоставить высококачественную информацию для реставрации произведений искусства, судебной экспертизы и материаловедения в условиях, когда трудно доставить стационарное лабораторное оборудование.
Уличное искусство принимает множество форм, и яркие фрески на Берлинской стене как до, так и после ее падения являются выражением мнений людей. Но вокруг процессов создания картин всегда существовала некая таинственность, из-за чего их было трудно сохранить. Исследователи (JACS, 2024
Сначала исследователи увеличили фрагменты и заметили, что все они имели два или три слоя краски с видимыми мазками кисти. Третий слой, контактирующий с каменной стеной, выглядел белым, что, по их мнению, является базовым покрытием, используемым традиционно для подготовки стены к покраске. Затем онииспользовали портативный рамановскийспектрометр для анализа фрагментов и сравнили их со спектрами, собранными из коммерческой библиотеки спектров пигментов, и определили основные пигменты в образцах, такие каказопигменты (желтые и красные фрагменты), фталоцианины (синие и зеленые фрагменты), хромат свинца (зеленые фрагменты) и титановые белила (белые фрагменты). Эти результаты были подтверждены другими неразрушающими методами, включая рентгеновскую флуоресценцию и спектроскопию диффузного отражения.
Затем исследователи смешали пигменты из акриловой краски коммерческой марки, используемой в Германии с 19 века, с различными пропорциями титановых белил, пытаясь подобрать цвета и диапазон оттенков, типичных для художников. Используя данные рамановскойспектроскопии, обработанные на компьютере, с помощью алгоритмов машинного обучения был определен процент пигмента. Подход показал, что кусочки краски Берлинской стены содержали титановые белила и до 75% пигмента в зависимости от анализируемого фрагмента и в соответствии с цветовым тоном.
Исследователи говорят, что эти результаты указывают на то, что их модель ИИ может предоставить высококачественную информацию для реставрации произведений искусства, судебной экспертизы и материаловедения в условиях, когда трудно доставить стационарное лабораторное оборудование.
Please open Telegram to view this post
VIEW IN TELEGRAM
С Новым годом!🎄
Дорогие подписчики канала Квант цвета! Счастья, удачи и благополучия всем в наступающем 2025 году. Будем стараться и в дальнейшем радовать Вас интересными и познавательными постами и надеемся на обратную реакцию. С Новым годом!
Естественно, что заключительный пост в году связан с новогодней тематикой, и мы обратили наш взгляд на Восток. Новогодние гравюры и картины на дереве — это вид народного искусства или художественная форма с региональной спецификой в Китае. Эти картины обычно вывешивались на дверях во время праздника Весны, чтобы приветствовать благоприятное начало Нового года. Производство новогодних картин достигло своего пика с развитием популярной культуры во времена династии Цин (1644–1912 гг. н. э.). В Восточной Азии внедрение китайской техники гравюры на дереве способствовало созданию народных картин, таких как японские гравюры (также известные как укиё-э), корейские и вьетнамские народные картины. Как и новогодние картины, эти произведения искусства были созданы с помощью печати на дереве, что делало картины доступными.
В работе (📕 Journal of Archaeological Science: Reports, 2023) изучали новогодние картины конца 19 – начала 20 в, которые отличаются широким разнообразием цветов, особенно после появления синтетических красителей из Европы в конце 19 в. Научная идентификация красителей и пигментов, используемых в этих картинах, может, по мнению авторов, дать ценную информацию о социально-историческом контексте того времени, однако история материалов, используемых при печати новогодних картин, по-прежнему остается не конца ясной. Китайские исследователи использовали комбинацию физическихметодов, включая макрорентгеновскую флуоресцентную визуализацию (MA-XRF), гиперспектральнуювизуализацию и рамановскую спектроскопию, чтобы идентифицировать красители и пигменты, используемые в двух новогодних картинах Янлюцин. Выполненный анализ выявил наличие как традиционных пигментов, так и синтетических красителей, таких как киноварь, берлинская лазурь и метиловый/кристаллический фиолетовый. Авторы также обнаружили несколько методов подбора цветов, используемых для создания светло-розовых, светло-оранжевых и темно-фиолетовых оттенков. Эти результаты свидетельствуют о том, что синтетические красители постепенно заменяли традиционные пигменты в Китае из-за роста мировой торговли в то время.
Дорогие подписчики канала Квант цвета! Счастья, удачи и благополучия всем в наступающем 2025 году. Будем стараться и в дальнейшем радовать Вас интересными и познавательными постами и надеемся на обратную реакцию. С Новым годом!
Естественно, что заключительный пост в году связан с новогодней тематикой, и мы обратили наш взгляд на Восток. Новогодние гравюры и картины на дереве — это вид народного искусства или художественная форма с региональной спецификой в Китае. Эти картины обычно вывешивались на дверях во время праздника Весны, чтобы приветствовать благоприятное начало Нового года. Производство новогодних картин достигло своего пика с развитием популярной культуры во времена династии Цин (1644–1912 гг. н. э.). В Восточной Азии внедрение китайской техники гравюры на дереве способствовало созданию народных картин, таких как японские гравюры (также известные как укиё-э), корейские и вьетнамские народные картины. Как и новогодние картины, эти произведения искусства были созданы с помощью печати на дереве, что делало картины доступными.
В работе (
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from ISPM_science
🧩Что делает мир вокруг нас цветным? В первую очередь - непосредственно то, что даёт объектам их окраску – красители и пигменты, которые сообщают нам информацию о цвете, поглощая падающий свет определённых длин волн и отражая оставшуюся часть спектра. Однако существует в природе метод окраски, отличный от возбуждения молекул красителей – структурная окраска, основанная на упорядочивании микро/наноструктур в фотонные кристаллы, что вызывает периодическое изменение показателя преломления, т.е. «поглощение» света основано не на электронных переходах, а исключительно на оптических явлениях – дифракции и интерференции. Простейший пример подобных систем – окраска крыльев некоторых видов бабочек, хамелеонов, насекомых или некоторые минералы, в частности опал, представляющий из себя гидратированную аморфную силику. Подобная окраска устойчива к выцветанию, так как гораздо меньше зависима от фотоокисления, даёт огромную выборку цветов и является более экологически чистой.
🔝Современные фотонные кристаллы способны реагировать на разные формы возбуждения, изменяя свой цвет, однако часто они не имеют способности к эффективному самовосстановлению, что особенно важно, если речь идёт о механохромизме – изменению полосы поглощения при механическом воздействии, а также не способны эффективно «запоминать» цвет при прекращении воздействия. Тем не менее, они уже находят применение в виде сенсоров, безчернильной печати, защиты от подделки денег и ценных бумаг, умных окнах и многих других сферах.
🧑🏻🔬Однако недавно группа учёных из Шаосинского университета и Университета Китайской Академии Наук Ханчжоу смогла разработать систему из матрицы на основе 2-[[(бутиламино)карбонил]окси]этил акрилата (BCOEA), поли(этиленгликоль)диакрилата (PEGDA) и частиц силики диаметром ~200 нм, которые смешивают в этаноле, затем упаривают растворитель и проводят полимеризацию под действием УФ-лампы. В результате образуются неплотно упакованные коллоидные кристаллы, распределённые в матрице, сшитой как редкими ковалентными участками полиэтиленгликоля, так и водородными связями между уретановыми фрагментами в боковых цепях pBCOEA. Введение уретановых цепей придаёт материалу способность самовосстанавливаться после разрезания, а также адгезию к самым разным субстратам благодаря нековалентным механизмам – водородным связям, диполь-дипольным и Ван-дер-Ваальсовым взаимодействиям. Сам материал при этом демонстрирует чувствительность сразу к нескольким видам воздействий – он демонстрирует механохромизм – при растяжении постепенно наблюдается синее смещение, чувствительность к нажатиям, насыщенность цвета прямо зависит от температуры – при нагревании сатурация цвета значительно снижается, а также явление сольватохромии, причём не только между разными классами растворителей – аминами, галогенидами бензола, ароматическими углеводородами и спиртами, но и между гомологами внутри одного класса и даже изомерами, что позволяет различать их или обнаруживать в сложных системах. Помимо этого, крайне важным достижением стала способность сохранять цвет плёнки после прекращения воздействия, а также сохранять форму, так как температура стеклования данного материала всего лишь -8°С, что открывает разные возможности его применения, например для индикации нарушения температурного режима в пищевой промышленности, чувствительных к нажатиям дисплеев, создания паттернов для защиты от подделки денег, самых разных сенсоров, умных оптических фильтров, цветной печати нового поколения и прочего.
Текст публикации доступен по ссылке
🔝Современные фотонные кристаллы способны реагировать на разные формы возбуждения, изменяя свой цвет, однако часто они не имеют способности к эффективному самовосстановлению, что особенно важно, если речь идёт о механохромизме – изменению полосы поглощения при механическом воздействии, а также не способны эффективно «запоминать» цвет при прекращении воздействия. Тем не менее, они уже находят применение в виде сенсоров, безчернильной печати, защиты от подделки денег и ценных бумаг, умных окнах и многих других сферах.
🧑🏻🔬Однако недавно группа учёных из Шаосинского университета и Университета Китайской Академии Наук Ханчжоу смогла разработать систему из матрицы на основе 2-[[(бутиламино)карбонил]окси]этил акрилата (BCOEA), поли(этиленгликоль)диакрилата (PEGDA) и частиц силики диаметром ~200 нм, которые смешивают в этаноле, затем упаривают растворитель и проводят полимеризацию под действием УФ-лампы. В результате образуются неплотно упакованные коллоидные кристаллы, распределённые в матрице, сшитой как редкими ковалентными участками полиэтиленгликоля, так и водородными связями между уретановыми фрагментами в боковых цепях pBCOEA. Введение уретановых цепей придаёт материалу способность самовосстанавливаться после разрезания, а также адгезию к самым разным субстратам благодаря нековалентным механизмам – водородным связям, диполь-дипольным и Ван-дер-Ваальсовым взаимодействиям. Сам материал при этом демонстрирует чувствительность сразу к нескольким видам воздействий – он демонстрирует механохромизм – при растяжении постепенно наблюдается синее смещение, чувствительность к нажатиям, насыщенность цвета прямо зависит от температуры – при нагревании сатурация цвета значительно снижается, а также явление сольватохромии, причём не только между разными классами растворителей – аминами, галогенидами бензола, ароматическими углеводородами и спиртами, но и между гомологами внутри одного класса и даже изомерами, что позволяет различать их или обнаруживать в сложных системах. Помимо этого, крайне важным достижением стала способность сохранять цвет плёнки после прекращения воздействия, а также сохранять форму, так как температура стеклования данного материала всего лишь -8°С, что открывает разные возможности его применения, например для индикации нарушения температурного режима в пищевой промышленности, чувствительных к нажатиям дисплеев, создания паттернов для защиты от подделки денег, самых разных сенсоров, умных оптических фильтров, цветной печати нового поколения и прочего.
Текст публикации доступен по ссылке
У рака-богомола лучшие в мире глаза
Люди воспринимают удивительный мир цвета, но что, интересно, могут видеть животные? Хорошо известно, что в наших глазах есть три фоторецептора: красный, зеленый и синий. Наше зрение лучше, чем у собак, у которых всего два фоторецептора (зеленый и синий), но гораздо хуже по сравнению со зрением многих птиц, у которых есть четыре фоторецептора: помимо красного, зеленого и синего, у них имеется еще и ультрафиолетовый (УФ) рецептор. Добавление УФ-фоторецептора трудно себе представить, но, если мы рассмотрим зрение беспозвоночных, это результат станет еще более ошеломляющим. У бабочек есть пять фоторецепторов, обеспечивающих им видение в УФ- области и улучшенную способность различать два похожих цвета. У осьминогов нет цветного зрения, но они могут обнаруживать поляризованный свет. Заметим, что для человека это возможно только при наличии соответствующих очков.
Оказывается, что зрение раков-богомолов затмевает все вышеперечисленное (📕 Current Biology, 2008). У них имеется до 16 фоторецепторов, и они могут видеть УФ, видимый и поляризованный свет. Фактически, это единственные животные, которые обнаруживают свет с круговой поляризацией, а также они могут воспринимать глубину одним глазом и двигать каждым глазом независимо. У раков-богомолов сложные глаза, которые состоят из десятков тысяч т.н. омматидиев - элементов, содержащих кластер фоторецепторных клеток, опорных клеток и пигментных клеток. У видов с потрясающим зрением, гонодактилид и лизиосквиллид, в середине глаза есть шесть рядов модифицированных омматидиев, называемых средней полосой. Каждый ряд специализирован для обнаружения определенных длин волн света или поляризованного света.
Столь удивительное зрение ротоногих вдохновило ученых на создание многослойных наноразмерных фоторецепторов на основе кластеров серебра и пентацена (📕 Nature Communications, 2024). Для полученных гетероструктур удалось добиться распознавания света с круговой поляризацией. Исследователи считают, что их разработка поможет в создании многозадачных и компактных искусственных зрительных систем будущего.
Люди воспринимают удивительный мир цвета, но что, интересно, могут видеть животные? Хорошо известно, что в наших глазах есть три фоторецептора: красный, зеленый и синий. Наше зрение лучше, чем у собак, у которых всего два фоторецептора (зеленый и синий), но гораздо хуже по сравнению со зрением многих птиц, у которых есть четыре фоторецептора: помимо красного, зеленого и синего, у них имеется еще и ультрафиолетовый (УФ) рецептор. Добавление УФ-фоторецептора трудно себе представить, но, если мы рассмотрим зрение беспозвоночных, это результат станет еще более ошеломляющим. У бабочек есть пять фоторецепторов, обеспечивающих им видение в УФ- области и улучшенную способность различать два похожих цвета. У осьминогов нет цветного зрения, но они могут обнаруживать поляризованный свет. Заметим, что для человека это возможно только при наличии соответствующих очков.
Оказывается, что зрение раков-богомолов затмевает все вышеперечисленное (
Столь удивительное зрение ротоногих вдохновило ученых на создание многослойных наноразмерных фоторецепторов на основе кластеров серебра и пентацена (
Please open Telegram to view this post
VIEW IN TELEGRAM
Зачем раку-богомолу такое шикарное зрение?
Общая структура глаза рака-богомола интригует. Три части каждого глаза смотрят в одну и ту же точку в пространстве. Это приводит к тому, что около 70% глаза фокусируется на узкой полоске в пространстве, и дает им возможность воспринимать глубину всего одним глазом. Чтобы создать изображение с помощью этой полосы, рак-богомол постоянно двигает глазами и сканирует окружающую среду. Здесь полезна способность двигать каждым глазом независимо, и это позволяет раку-богомолу иметь большое поле зрения. Естественно, возникает вопрос: для чего все это?
Известно, что многие животные используют в своей деятельности визуальные сигналы. Например, самки павлинов предпочитают самцов павлинов с большим количеством глазных пятен в их шлейфе, а самцы хамелеонов демонстрируют доминирование, используя более яркие цвета. Поведенческие наблюдения и морфология предполагают, что раки-богомолы также используют свою сложную визуальную систему для общения (📕 Cell Reports Physical Science, 2024). Известно, что самцы раков-богомолов исполняют брачные танцы по отношению к самкам и демонстрируют агрессивные проявления по отношению к другим самцам. Оба вида поведения демонстрируют цветные пятна, которые различаются по отражательным свойствам, например, яркости, цвету, у отдельных раков-богомолов. Это говорит о том, что мигание этих пятен может предоставить получателю информацию о сигнальщике.
Не менее важен тот факт, как раки-богомолы охотятся. Они спокойно выжидают, пока жертва приблизится к ним, а затем резко набрасываются, хватают, прокалывают ее и используют в пищу. Причем, «клешня» рака-хватателя, вооруженная пиками, выбрасывается с невероятным ускорением, около 10 000 g. По-видимому, богатое зрение хорошо помогает при резких и быстрых движениях на охоте, когда очень важно молниеносно рассчитать расстояние и траекторию движения (Journal of Experimental Biology, 2024).
Общая структура глаза рака-богомола интригует. Три части каждого глаза смотрят в одну и ту же точку в пространстве. Это приводит к тому, что около 70% глаза фокусируется на узкой полоске в пространстве, и дает им возможность воспринимать глубину всего одним глазом. Чтобы создать изображение с помощью этой полосы, рак-богомол постоянно двигает глазами и сканирует окружающую среду. Здесь полезна способность двигать каждым глазом независимо, и это позволяет раку-богомолу иметь большое поле зрения. Естественно, возникает вопрос: для чего все это?
Известно, что многие животные используют в своей деятельности визуальные сигналы. Например, самки павлинов предпочитают самцов павлинов с большим количеством глазных пятен в их шлейфе, а самцы хамелеонов демонстрируют доминирование, используя более яркие цвета. Поведенческие наблюдения и морфология предполагают, что раки-богомолы также используют свою сложную визуальную систему для общения (
Не менее важен тот факт, как раки-богомолы охотятся. Они спокойно выжидают, пока жертва приблизится к ним, а затем резко набрасываются, хватают, прокалывают ее и используют в пищу. Причем, «клешня» рака-хватателя, вооруженная пиками, выбрасывается с невероятным ускорением, около 10 000 g. По-видимому, богатое зрение хорошо помогает при резких и быстрых движениях на охоте, когда очень важно молниеносно рассчитать расстояние и траекторию движения (Journal of Experimental Biology, 2024).
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Chem ML/AI/Datasets
Hybrid nanophotonic-microfluidic sensor integrated with machine learning for operando state-of-charge monitoring in vanadium flow batteries
https://doi.org/10.1016/j.est.2025.115349
При нашем скромном участии вчера вышла работа, в которой представлен усовершенствованный метод измерения степени заряда (SoC) ванадиевых проточных батарей (VRFB) с использованием показателя преломления и машинного обучения.
Основной акцент сделан на использовании изменения показателя преломления (RI) электролитов для оценки концентрации ионов ванадия.
Разработанный сенсор основан на фотонных интегральных схемах (PIC) и микрофлюидных каналах, что обеспечивает высокую чувствительность. Система прошла тестирование на рабочих условиях батареи, показав устойчивую корреляцию между спектральными характеристиками и данными о заряде.
Используя экспериментальные данные, ML модель была обучена точно предсказывать степень заряда проточной ванадиевой батареи путем анализа спектральных характеристик.
🔗По этой ссылке статья будет доступна бесплатно в течение первых 50 дней: https://authors.elsevier.com/c/1kSYB,rUrFxfAl
📕 Journal of Energy Storage (IF=8.9)
#application
https://doi.org/10.1016/j.est.2025.115349
При нашем скромном участии вчера вышла работа, в которой представлен усовершенствованный метод измерения степени заряда (SoC) ванадиевых проточных батарей (VRFB) с использованием показателя преломления и машинного обучения.
Основной акцент сделан на использовании изменения показателя преломления (RI) электролитов для оценки концентрации ионов ванадия.
Разработанный сенсор основан на фотонных интегральных схемах (PIC) и микрофлюидных каналах, что обеспечивает высокую чувствительность. Система прошла тестирование на рабочих условиях батареи, показав устойчивую корреляцию между спектральными характеристиками и данными о заряде.
Используя экспериментальные данные, ML модель была обучена точно предсказывать степень заряда проточной ванадиевой батареи путем анализа спектральных характеристик.
🔗По этой ссылке статья будет доступна бесплатно в течение первых 50 дней: https://authors.elsevier.com/c/1kSYB,rUrFxfAl
#application
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Химия в России и за рубежом (канал ИОНХ РАН)
ВТОРОЕ ИНФОРМАЦИОННОЕ СООБЩЕНИЕ
Научный совет по неорганической химии РАН и Научно-образовательный центр ИОНХ РАН приглашают коллег принять участие в работе Первой ежегодной зимней школы по физическим методам исследования неорганических веществ и материалов – 2025, которая пройдет с 17 по 21 февраля 2025 г. в Институте общей и неорганической химии им. Н. С. Курнакова РАН в очном формате.
Курс «Зимней школы» направлен на ознакомление с основами и интерпретацией результатов таких современных физических методов анализа как монокристальная и порошковая рентгеновская дифракция, растровая электронная микроскопия и рентгеноспектральный микроанализ, спектроскопия УФ-видимого диапазона, ИК- и КР-спектроскопия, фотолюминесцентная спектроскопия.
Курс зимней школы предполагает лекционные и практические занятия в интенсивном формате.
Основное внимание будет уделено современным достижениям в области исследования характеристик неорганических веществ и перспективных материалов применительно к их использованию в различных отраслях – от микроэлектроники до биомедицины.
Для участников зимней школы будет организована экскурсия в Центр коллективного пользования физическими методами исследований веществ и материалов ИОНХ РАН.
Число участников ограничено. Стоимость участия в мероприятии – 20 000 рублей с человека.
Лицам, освоившим программу Зимней школы и успешно прошедшим итоговую аттестацию, выдается удостоверение о повышении квалификации установленного образца.
Для участия необходимо подать заявку в свободной форме в Научно-образовательный центр ИОНХ РАН по e-mail: [email protected]
Спешите стать участником уникального курса!
#обучение #ионх
Научный совет по неорганической химии РАН и Научно-образовательный центр ИОНХ РАН приглашают коллег принять участие в работе Первой ежегодной зимней школы по физическим методам исследования неорганических веществ и материалов – 2025, которая пройдет с 17 по 21 февраля 2025 г. в Институте общей и неорганической химии им. Н. С. Курнакова РАН в очном формате.
Курс «Зимней школы» направлен на ознакомление с основами и интерпретацией результатов таких современных физических методов анализа как монокристальная и порошковая рентгеновская дифракция, растровая электронная микроскопия и рентгеноспектральный микроанализ, спектроскопия УФ-видимого диапазона, ИК- и КР-спектроскопия, фотолюминесцентная спектроскопия.
Курс зимней школы предполагает лекционные и практические занятия в интенсивном формате.
Основное внимание будет уделено современным достижениям в области исследования характеристик неорганических веществ и перспективных материалов применительно к их использованию в различных отраслях – от микроэлектроники до биомедицины.
Для участников зимней школы будет организована экскурсия в Центр коллективного пользования физическими методами исследований веществ и материалов ИОНХ РАН.
Число участников ограничено. Стоимость участия в мероприятии – 20 000 рублей с человека.
Лицам, освоившим программу Зимней школы и успешно прошедшим итоговую аттестацию, выдается удостоверение о повышении квалификации установленного образца.
Для участия необходимо подать заявку в свободной форме в Научно-образовательный центр ИОНХ РАН по e-mail: [email protected]
Спешите стать участником уникального курса!
#обучение #ионх
Мыльные картины
С детства мы знаем о пользе мыла для гигиены. Главным компонентом мыла являются водорастворимые соли жирных кислот, образованные натрием или калием. Однако мыла могут давать и другие металлы, когда оксиды или гидроксиды металлов вступают в реакцию с жирными кислотами; такие соли называют карбоксилатами.
Образование мыл при взаимодействии неорганических катионов, содержащихся в минеральных пигментах, с жирными кислотами, получающимися при гидролизе масляных связующих, рассматривается как одна из основных причин появления на картинах участков с эстетически неприятной прозрачностью или выступов, которые могут оказывать давление на слои краски, приводя к механическому расширению и, следовательно, к шелушению и растрескиванию полотен (📕 Heritage Science, 2023; 📕 npj Materials Degradation, 2024).
Например, на знаменитой картине Рембрандта «Ночной дозор» исследователи нашли фрагменты с концентрированным содержанием карбоксилатов свинца, в том числе стеарата свинца (📕 Angewandte Chemie, 2023). А немного позднее те же авторы обнаружили целый слой в глубине этой картины, который был сильно обогащен свинцом в форме аморфных и кристаллических свинцовых мыл (📕 Science advances, 2023).
Исследователи полагают, что миграция ионов свинца в грунтовый слой и образование свинцовых мыл могли быть ускорены и усилены типом консервационной обработки с применением воско-смоляной композиции (пчелиный воск и натуральные смолы содержат жирные кислоты), во время которой расплавленная смесь воска и смолы наносилась на заднюю часть картины для консолидации отслаивающейся краски и приклеивания нового холста для поддержки оригинального холста. Такой тип обработки применяли к «Ночному дозору» трижды в 1851, 1945 и 1975 гг.
С детства мы знаем о пользе мыла для гигиены. Главным компонентом мыла являются водорастворимые соли жирных кислот, образованные натрием или калием. Однако мыла могут давать и другие металлы, когда оксиды или гидроксиды металлов вступают в реакцию с жирными кислотами; такие соли называют карбоксилатами.
Образование мыл при взаимодействии неорганических катионов, содержащихся в минеральных пигментах, с жирными кислотами, получающимися при гидролизе масляных связующих, рассматривается как одна из основных причин появления на картинах участков с эстетически неприятной прозрачностью или выступов, которые могут оказывать давление на слои краски, приводя к механическому расширению и, следовательно, к шелушению и растрескиванию полотен (
Например, на знаменитой картине Рембрандта «Ночной дозор» исследователи нашли фрагменты с концентрированным содержанием карбоксилатов свинца, в том числе стеарата свинца (
Исследователи полагают, что миграция ионов свинца в грунтовый слой и образование свинцовых мыл могли быть ускорены и усилены типом консервационной обработки с применением воско-смоляной композиции (пчелиный воск и натуральные смолы содержат жирные кислоты), во время которой расплавленная смесь воска и смолы наносилась на заднюю часть картины для консолидации отслаивающейся краски и приклеивания нового холста для поддержки оригинального холста. Такой тип обработки применяли к «Ночному дозору» трижды в 1851, 1945 и 1975 гг.
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Химия и Жизнь
Сенсоры для экспресс-мониторинга
Специалисты Томского политехнического университета разработали особые колориметрические сенсоры. Они могут распознавать полезные и токсичные вещества, а также их концентрацию в пищевых продуктах, напитках, биологических жидкостях, поверхностных и подземных водах и пр. Сенсоры из оргстекла–полиметилметакрилата с модифицированной под определенное вещество структурой меняет цвет при контакте с ним. Диагностику по цветовым характеристикам проводит программа для компьютера или смартфона. Это занимает от нескольких секунд до минуты.
Источник: Optical Materials
Канал автора: https://www.group-telegram.com/medneus
Специалисты Томского политехнического университета разработали особые колориметрические сенсоры. Они могут распознавать полезные и токсичные вещества, а также их концентрацию в пищевых продуктах, напитках, биологических жидкостях, поверхностных и подземных водах и пр. Сенсоры из оргстекла–полиметилметакрилата с модифицированной под определенное вещество структурой меняет цвет при контакте с ним. Диагностику по цветовым характеристикам проводит программа для компьютера или смартфона. Это занимает от нескольких секунд до минуты.
Источник: Optical Materials
Канал автора: https://www.group-telegram.com/medneus