Telegram Group & Telegram Channel
Помните, писала пост про десять AI-предсказаний Forbes на 2024 год? Там шестой пункт — про то, что "появятся архитектуры-альтернативы трансформерам". И одним из главных претендентов на архитектуру-убийцу трансформера там была названа Mamba.

Так вот, еще с того момента, как писала тот пост, хотела эту Мамбу заботать, но никак руки не доходили. Но вчера у нас в универ был reading group, который был посвящен как раз Мамбе. Хочу сказать, что reading group действительно помог быстро и понять общую идею модели. Так что собирайтесь в reading club'ы, это круто и полезно)

Но прямо сейчас я пост/статейку про Mamba писать все равно еще не готова, мне нужно понять еще несколько нюансов и заботать статьи, на которых Mamba основана. Пока напишу несколько основных мыслей и тезисов по ней. Поправьте меня, если я вдруг где-то не права.

Начем с того, что Mamba — это не какая-то супер-новая архитектура, которая отличается от всего, что мы видели, и которая взяла и перевернула мир. Mamba основана на State Space Models (SSM) — архитектуре, которая была предложена аж в 1960-х. SSM хорошо подходят для работы с непрерывными типами данных, такими, как аудио.

Главные преимущества SSM:
— количество времени и пямяти, которые требуют SSM во время обучения и инференса, растет линейно относительно длины входной последовательности. Если обучить SSM на задачу языкового моделирования, то модель будет тратить константное количество времени и памяти на каждый шаг генерации;
— SSM легко поддерживают огромный размер контекста, до 1 миллиона токенов.

Это все звучит хорошо. Но для дискретных модальностей, таких, как текст, до сих пор успешно применить SMM не удавалось. То есть, условно, не получалось достичь того, чтобы SMM имела сравнимое с транфсормерами качество на задаче языкового моделирования, не требуя при этом сильно больше времени на inference. Главным препятствием тут было то, что механизм стандартных SSM не позволяет модели выделять из входной последовательности отдельные части информации, которые важны для текущего инпута. А это — очень важное умение для LLM. А те модификации SSM, которые так делать умеют, сразу сильно теряют в скорости.

Авторы Mamba предложили пару модификаций в архитектуру современной SSM, которые и позволили Mamba наделать шуму в обществе и стать, как часто пишут, "угрозой для трансформеров". На задаче языкового моделирования Mamba достигает уровня GPT-NeoX, имея в два раза меньше обучаемых параметров. Более того, скорость инференса у Mamba тоже сильно лучше: она достигает улучшения в 5 раз по сравнению с трансформерами — это просто огромный прорыв для SMM. Конечно, это всего лишь сравнение с GPT-NeoX на нескольких бенчмарках, большой Mamba-based LLM типа GPT-4 еще нет и в помине. Но, на первый взгляд, результаты выглядят очень круто.

Но что же такое эта ваша Mamba? Если оочень кратко, то Mamba — это SSM + MLP блок Трансформера + пара трюков для ускорения модели. По архитектуру Mamba я, надеюсь, позже напишу более подробный пост или статью. А вот в трюках для ускорения становится интересно: они основаны не на архитектурных решениях, а на работе с процессором (т.е. они hardware-aware). На основе знаний о нюансах работы частей GPU, авторы предлагают хранить и обрабатывать тензоры, возникающие в процессе работы SSM, в разных частях GPU. Это сильно ускоряет процесс. Большего я тут пока сказать не могу, потому что практически ничего в устройствах hardware не понимаю (хотя моя мама была инженером-наладчиком ЭВМ, вот это ирония))

Вот как-то так. Надо еще сказать, что больше всего шуму Mamba пока что наводит не в мире NLP/LLM, а в медицине. В этом домене есть данные, представленные в виде последовательностей (геномы), и изображений огромного размера (всякие сканы тканей), поэтому у исследователей есть мысль, что Mamba сможет тут реально помочь. А в NLP то ли очень сильная инерция (мы по уши увязли в трансформерах), то ли у SSM есть серьезные ограничения, которых я пока не понимаю. А может, кто-то уже и ведет работу над SSM-LLM, и мы скоро об этом узнаем)

📃Статья Mamba



group-telegram.com/dl_stories/833
Create:
Last Update:

Помните, писала пост про десять AI-предсказаний Forbes на 2024 год? Там шестой пункт — про то, что "появятся архитектуры-альтернативы трансформерам". И одним из главных претендентов на архитектуру-убийцу трансформера там была названа Mamba.

Так вот, еще с того момента, как писала тот пост, хотела эту Мамбу заботать, но никак руки не доходили. Но вчера у нас в универ был reading group, который был посвящен как раз Мамбе. Хочу сказать, что reading group действительно помог быстро и понять общую идею модели. Так что собирайтесь в reading club'ы, это круто и полезно)

Но прямо сейчас я пост/статейку про Mamba писать все равно еще не готова, мне нужно понять еще несколько нюансов и заботать статьи, на которых Mamba основана. Пока напишу несколько основных мыслей и тезисов по ней. Поправьте меня, если я вдруг где-то не права.

Начем с того, что Mamba — это не какая-то супер-новая архитектура, которая отличается от всего, что мы видели, и которая взяла и перевернула мир. Mamba основана на State Space Models (SSM) — архитектуре, которая была предложена аж в 1960-х. SSM хорошо подходят для работы с непрерывными типами данных, такими, как аудио.

Главные преимущества SSM:
— количество времени и пямяти, которые требуют SSM во время обучения и инференса, растет линейно относительно длины входной последовательности. Если обучить SSM на задачу языкового моделирования, то модель будет тратить константное количество времени и памяти на каждый шаг генерации;
— SSM легко поддерживают огромный размер контекста, до 1 миллиона токенов.

Это все звучит хорошо. Но для дискретных модальностей, таких, как текст, до сих пор успешно применить SMM не удавалось. То есть, условно, не получалось достичь того, чтобы SMM имела сравнимое с транфсормерами качество на задаче языкового моделирования, не требуя при этом сильно больше времени на inference. Главным препятствием тут было то, что механизм стандартных SSM не позволяет модели выделять из входной последовательности отдельные части информации, которые важны для текущего инпута. А это — очень важное умение для LLM. А те модификации SSM, которые так делать умеют, сразу сильно теряют в скорости.

Авторы Mamba предложили пару модификаций в архитектуру современной SSM, которые и позволили Mamba наделать шуму в обществе и стать, как часто пишут, "угрозой для трансформеров". На задаче языкового моделирования Mamba достигает уровня GPT-NeoX, имея в два раза меньше обучаемых параметров. Более того, скорость инференса у Mamba тоже сильно лучше: она достигает улучшения в 5 раз по сравнению с трансформерами — это просто огромный прорыв для SMM. Конечно, это всего лишь сравнение с GPT-NeoX на нескольких бенчмарках, большой Mamba-based LLM типа GPT-4 еще нет и в помине. Но, на первый взгляд, результаты выглядят очень круто.

Но что же такое эта ваша Mamba? Если оочень кратко, то Mamba — это SSM + MLP блок Трансформера + пара трюков для ускорения модели. По архитектуру Mamba я, надеюсь, позже напишу более подробный пост или статью. А вот в трюках для ускорения становится интересно: они основаны не на архитектурных решениях, а на работе с процессором (т.е. они hardware-aware). На основе знаний о нюансах работы частей GPU, авторы предлагают хранить и обрабатывать тензоры, возникающие в процессе работы SSM, в разных частях GPU. Это сильно ускоряет процесс. Большего я тут пока сказать не могу, потому что практически ничего в устройствах hardware не понимаю (хотя моя мама была инженером-наладчиком ЭВМ, вот это ирония))

Вот как-то так. Надо еще сказать, что больше всего шуму Mamba пока что наводит не в мире NLP/LLM, а в медицине. В этом домене есть данные, представленные в виде последовательностей (геномы), и изображений огромного размера (всякие сканы тканей), поэтому у исследователей есть мысль, что Mamba сможет тут реально помочь. А в NLP то ли очень сильная инерция (мы по уши увязли в трансформерах), то ли у SSM есть серьезные ограничения, которых я пока не понимаю. А может, кто-то уже и ведет работу над SSM-LLM, и мы скоро об этом узнаем)

📃Статья Mamba

BY DLStories


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/dl_stories/833

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Recently, Durav wrote on his Telegram channel that users' right to privacy, in light of the war in Ukraine, is "sacred, now more than ever." Overall, extreme levels of fear in the market seems to have morphed into something more resembling concern. For example, the Cboe Volatility Index fell from its 2022 peak of 36, which it hit Monday, to around 30 on Friday, a sign of easing tensions. Meanwhile, while the price of WTI crude oil slipped from Sunday’s multiyear high $130 of barrel to $109 a pop. Markets have been expecting heavy restrictions on Russian oil, some of which the U.S. has already imposed, and that would reduce the global supply and bring about even more burdensome inflation. Telegram was founded in 2013 by two Russian brothers, Nikolai and Pavel Durov. Oleksandra Matviichuk, a Kyiv-based lawyer and head of the Center for Civil Liberties, called Durov’s position "very weak," and urged concrete improvements. Messages are not fully encrypted by default. That means the company could, in theory, access the content of the messages, or be forced to hand over the data at the request of a government.
from in


Telegram DLStories
FROM American