Telegram Group & Telegram Channel
G-RAG: готовим графы знаний правильно

Вторая статья, вышедшая на той неделе – про retrieval-augmented generation (RAG). Конечно же, со вкусом графов – куда ж без них?

RAG – это такой лейкопластырь, которым мы залепливаем проблему контекста в языковых моделях. Поиск мы умеем делать довольно неплохо, поэтому давайте-ка прикрутим поиск к LLMкам и будем всем счастье – ну, то есть релевантные ответы, актуальная информация, вот это вот всё.

При этом всём, information retrieval (IR), заточенный на людей, для LLMок подойдёт как минимум неидеально: люди читают первые пару заголовков, а LLMки могут прожевать десяток-другой статей (если не Gemini 1.5 с миллионой длиной контекста, конечно).

В IR популярен подход с реранкингом, когда мы простой моделью достаём какое-то количество наиболее релевантных документов, и потом более сложной моделью их ранжируем заново. В нашем случае, хочется, чтобы LLMка увидела разнообразные факты про запрос юзера в наиболее релевантных документах. С этим нам помогут графы знаний.

Тут нужно лирическое отступление на тему графов знаний. Я эту дедовскую 👴 идею про идеально точное и полное описание сущностей отрицаю всей душой и сердцем. Ни у кого в мире не получилось построить корректно работающий граф знаний, и полагаться на одну статическую структуру для такой динамической задачи, как вопросы в свободной форме – тотальный харам. Поэтому вместо статического графа у нас динамический, который мы на этапе запроса строим по документам, которые наш ретривер вытащил на первом этапе. Это можно делать очень быстро, потому что графы по каждому документу мы можем посчитать заранее, а на этапе запроса их слепить вместе. ☺️

Этот граф мы преобразуем в граф над документами, и уже на этом графе делаем быстрый инференс графовой сетки, которая и выберет финальные документы для LLMки. Получился такой прототип для LLM-поисковика. Получившийся пайплайн выбивает существенно выше по бенчмаркам, чем существующие решения, особенно плохи чистые LLMки без RAGов. Главное в этих делах – не переесть камней.
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/epsiloncorrect/172
Create:
Last Update:

G-RAG: готовим графы знаний правильно

Вторая статья, вышедшая на той неделе – про retrieval-augmented generation (RAG). Конечно же, со вкусом графов – куда ж без них?

RAG – это такой лейкопластырь, которым мы залепливаем проблему контекста в языковых моделях. Поиск мы умеем делать довольно неплохо, поэтому давайте-ка прикрутим поиск к LLMкам и будем всем счастье – ну, то есть релевантные ответы, актуальная информация, вот это вот всё.

При этом всём, information retrieval (IR), заточенный на людей, для LLMок подойдёт как минимум неидеально: люди читают первые пару заголовков, а LLMки могут прожевать десяток-другой статей (если не Gemini 1.5 с миллионой длиной контекста, конечно).

В IR популярен подход с реранкингом, когда мы простой моделью достаём какое-то количество наиболее релевантных документов, и потом более сложной моделью их ранжируем заново. В нашем случае, хочется, чтобы LLMка увидела разнообразные факты про запрос юзера в наиболее релевантных документах. С этим нам помогут графы знаний.

Тут нужно лирическое отступление на тему графов знаний. Я эту дедовскую 👴 идею про идеально точное и полное описание сущностей отрицаю всей душой и сердцем. Ни у кого в мире не получилось построить корректно работающий граф знаний, и полагаться на одну статическую структуру для такой динамической задачи, как вопросы в свободной форме – тотальный харам. Поэтому вместо статического графа у нас динамический, который мы на этапе запроса строим по документам, которые наш ретривер вытащил на первом этапе. Это можно делать очень быстро, потому что графы по каждому документу мы можем посчитать заранее, а на этапе запроса их слепить вместе. ☺️

Этот граф мы преобразуем в граф над документами, и уже на этом графе делаем быстрый инференс графовой сетки, которая и выберет финальные документы для LLMки. Получился такой прототип для LLM-поисковика. Получившийся пайплайн выбивает существенно выше по бенчмаркам, чем существующие решения, особенно плохи чистые LLMки без RAGов. Главное в этих делах – не переесть камней.

BY epsilon correct




Share with your friend now:
group-telegram.com/epsiloncorrect/172

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

"Someone posing as a Ukrainian citizen just joins the chat and starts spreading misinformation, or gathers data, like the location of shelters," Tsekhanovska said, noting how false messages have urged Ukrainians to turn off their phones at a specific time of night, citing cybersafety. He said that since his platform does not have the capacity to check all channels, it may restrict some in Russia and Ukraine "for the duration of the conflict," but then reversed course hours later after many users complained that Telegram was an important source of information. Crude oil prices edged higher after tumbling on Thursday, when U.S. West Texas intermediate slid back below $110 per barrel after topping as much as $130 a barrel in recent sessions. Still, gas prices at the pump rose to fresh highs. There was another possible development: Reuters also reported that Ukraine said that Belarus could soon join the invasion of Ukraine. However, the AFP, citing a Pentagon official, said the U.S. hasn’t yet seen evidence that Belarusian troops are in Ukraine. For Oleksandra Tsekhanovska, head of the Hybrid Warfare Analytical Group at the Kyiv-based Ukraine Crisis Media Center, the effects are both near- and far-reaching.
from in


Telegram epsilon correct
FROM American