Telegram Group & Telegram Channel
В прошлый раз мы говорили о размере орбиты. Сегодня мы перейдем к обсуждению формы орбиты и первый раз затронем ситуацию, когда орбита перестает быть замкнутой.

Замкнутая орбита имеет форму эллипса, в частности, окружности. Форму эллипса можно характеризовать через соотношение его большой и малой полуоси: чем первая больше другой, тем более вытянут эллипс. Когда они совпадают, эллипс совпадает с окружностью, а большая полуось – с радиусом окружности.

Но есть куда более удобная возможность оценить форму орбиты: математика позволяет вывести из уравнения движения тела в центральном поле параметр, который называется эксцентриситет (обозначается латинской буквой «e»).

Это величина, которая может принимать значения от нуля до бесконечности и показывает, насколько форма орбиты отличается от окружности:

Если эксцентриситет равен нулю (e = 0), то орбита – окружность
Если эксцентриситет больше нуля и меньше единицы (0 < e < 1) – это все более и более вытянутый эллипс ❷.

Если апоцентр эллиптической орбиты выходит за пределы сферы Хилла*, то уже нельзя говорить о том, что орбита остается замкнутой. Это соответствует моменту, когда эксцентриситет становится больше или равен единице:

Если эксцентриситет достиг значения 1 (e = 1) – то орбита перестала быть замкнутой и имеет форму параболы
Если эксцентриситет больше 1 (e > 1) – орбита стала гиперболой ❸ (и чем больше эксцентриситет, тем более разомкнуты ветви гиперболы, в пределе стремясь стать прямой).

И для параболы, и для гиперболы значение большой полуоси будет отрицательным, а радиус апоцентра – равным бесконечности, и говорить об их размере затруднительно.

Все перечисленные формы орбит являются коническими сечениями. В реальном мире невозможно найти ситуацию, когда объект движется точно по траекториям, которые можно описать такими идеальными орбитами, но они подходят, как начальное приближение или оценка траектории на короткое время (оскулирующая орбита).

* - при старте с поверхности этому соответствует набор второй космической скорости.

#орбитальнаямеханика



group-telegram.com/explaining_space/35
Create:
Last Update:

В прошлый раз мы говорили о размере орбиты. Сегодня мы перейдем к обсуждению формы орбиты и первый раз затронем ситуацию, когда орбита перестает быть замкнутой.

Замкнутая орбита имеет форму эллипса, в частности, окружности. Форму эллипса можно характеризовать через соотношение его большой и малой полуоси: чем первая больше другой, тем более вытянут эллипс. Когда они совпадают, эллипс совпадает с окружностью, а большая полуось – с радиусом окружности.

Но есть куда более удобная возможность оценить форму орбиты: математика позволяет вывести из уравнения движения тела в центральном поле параметр, который называется эксцентриситет (обозначается латинской буквой «e»).

Это величина, которая может принимать значения от нуля до бесконечности и показывает, насколько форма орбиты отличается от окружности:

Если эксцентриситет равен нулю (e = 0), то орбита – окружность
Если эксцентриситет больше нуля и меньше единицы (0 < e < 1) – это все более и более вытянутый эллипс ❷.

Если апоцентр эллиптической орбиты выходит за пределы сферы Хилла*, то уже нельзя говорить о том, что орбита остается замкнутой. Это соответствует моменту, когда эксцентриситет становится больше или равен единице:

Если эксцентриситет достиг значения 1 (e = 1) – то орбита перестала быть замкнутой и имеет форму параболы
Если эксцентриситет больше 1 (e > 1) – орбита стала гиперболой ❸ (и чем больше эксцентриситет, тем более разомкнуты ветви гиперболы, в пределе стремясь стать прямой).

И для параболы, и для гиперболы значение большой полуоси будет отрицательным, а радиус апоцентра – равным бесконечности, и говорить об их размере затруднительно.

Все перечисленные формы орбит являются коническими сечениями. В реальном мире невозможно найти ситуацию, когда объект движется точно по траекториям, которые можно описать такими идеальными орбитами, но они подходят, как начальное приближение или оценка траектории на короткое время (оскулирующая орбита).

* - при старте с поверхности этому соответствует набор второй космической скорости.

#орбитальнаямеханика

BY Объясняем просто: космос






Share with your friend now:
group-telegram.com/explaining_space/35

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

"There is a significant risk of insider threat or hacking of Telegram systems that could expose all of these chats to the Russian government," said Eva Galperin with the Electronic Frontier Foundation, which has called for Telegram to improve its privacy practices. The last couple days have exemplified that uncertainty. On Thursday, news emerged that talks in Turkey between the Russia and Ukraine yielded no positive result. But on Friday, Reuters reported that Russian President Vladimir Putin said there had been some “positive shifts” in talks between the two sides. Ukrainian forces have since put up a strong resistance to the Russian troops amid the war that has left hundreds of Ukrainian civilians, including children, dead, according to the United Nations. Ukrainian and international officials have accused Russia of targeting civilian populations with shelling and bombardments. Some people used the platform to organize ahead of the storming of the U.S. Capitol in January 2021, and last month Senator Mark Warner sent a letter to Durov urging him to curb Russian information operations on Telegram. The regulator said it had received information that messages containing stock tips and other investment advice with respect to selected listed companies are being widely circulated through websites and social media platforms such as Telegram, Facebook, WhatsApp and Instagram.
from in


Telegram Объясняем просто: космос
FROM American