Telegram Group & Telegram Channel
DEADiff: An Efficient Stylization Diffusion Model with Disentangled Representations #style_transfer #paper

Статья (март 2024) про стилизацию картинок в задачах text-2-image и image-2-image.
Основано на модели Stable Diffusion v1.5, работает в режиме инференса, обучение не требуется.

Используется дополнительный адаптер (Q-former), который принимает на вход CLIP-эмбединг исходной картинки, обучаемый массив токенов, и текст "Style"/"Content" (в зависимости от задачи). Полученные эмбединги направляются (через cross-attention) в разные блоки U-net (контент — в узкую часть, стиль — в части с высоким разрешением).

Для обучения использовался закрытый датасет (сгенерированный через Midjourney на специально подготовленных текстовых промптах). Q-former обучается в нескольких режимах: "только стиль", "только контент", и специальный режим реконструкции исходной картинки, когда она же сама подается и в качестве стиля, и в качестве объекта.

Сделана дополнительная оптимизация вычислений: 2 отдельных слоя cross-attention объединены в один слой, который обрабатывает за один проход сконкатенированные эмбединги картинки и текста.

Возможна комбинация с любыми вариантами ControlNet (для версии SD v1.5), например, с картами глубины, Возможно смешивание разных стилей путем простого сложения их эмбедингов.

🤗HF
🔥Project Page
💻Github
📜Paper

@gentech_lab
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/gentech_lab/86
Create:
Last Update:

DEADiff: An Efficient Stylization Diffusion Model with Disentangled Representations #style_transfer #paper

Статья (март 2024) про стилизацию картинок в задачах text-2-image и image-2-image.
Основано на модели Stable Diffusion v1.5, работает в режиме инференса, обучение не требуется.

Используется дополнительный адаптер (Q-former), который принимает на вход CLIP-эмбединг исходной картинки, обучаемый массив токенов, и текст "Style"/"Content" (в зависимости от задачи). Полученные эмбединги направляются (через cross-attention) в разные блоки U-net (контент — в узкую часть, стиль — в части с высоким разрешением).

Для обучения использовался закрытый датасет (сгенерированный через Midjourney на специально подготовленных текстовых промптах). Q-former обучается в нескольких режимах: "только стиль", "только контент", и специальный режим реконструкции исходной картинки, когда она же сама подается и в качестве стиля, и в качестве объекта.

Сделана дополнительная оптимизация вычислений: 2 отдельных слоя cross-attention объединены в один слой, который обрабатывает за один проход сконкатенированные эмбединги картинки и текста.

Возможна комбинация с любыми вариантами ControlNet (для версии SD v1.5), например, с картами глубины, Возможно смешивание разных стилей путем простого сложения их эмбедингов.

🤗HF
🔥Project Page
💻Github
📜Paper

@gentech_lab

BY Gentech Lab






Share with your friend now:
group-telegram.com/gentech_lab/86

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

"Markets were cheering this economic recovery and return to strong economic growth, but the cheers will turn to tears if the inflation outbreak pushes businesses and consumers to the brink of recession," he added. Multiple pro-Kremlin media figures circulated the post's false claims, including prominent Russian journalist Vladimir Soloviev and the state-controlled Russian outlet RT, according to the DFR Lab's report. "The result is on this photo: fiery 'greetings' to the invaders," the Security Service of Ukraine wrote alongside a photo showing several military vehicles among plumes of black smoke. As the war in Ukraine rages, the messaging app Telegram has emerged as the go-to place for unfiltered live war updates for both Ukrainian refugees and increasingly isolated Russians alike. Perpetrators of such fraud use various marketing techniques to attract subscribers on their social media channels.
from in


Telegram Gentech Lab
FROM American