Telegram Group & Telegram Channel
Попытался прикинуть в режиме блиц, что такого важного и интересного произошло в AI в этом году. Ниже результат примерно десятиминутного размышления, что быстро всплыло из памяти. Плюс ещё полчаса-час на то, чтобы это раскрыть. Наверняка что-то важное забыл и если бы я потратил больше test time compute, наверное, результат был бы точнее, но в таком режиме тоже интересно.

Итак, мой список, не то чтобы по важности, просто по порядку вспоминания.

1. Test-time compute

Примерно с o1 (https://openai.com/index/learning-to-reason-with-llms/) открылась эра test-time compute, появилось новое измерение, по которому можно скейлить модели.

Ну как появилось, в принципе его следы и раньше можно найти. Те же варианты прогнать CNN на нескольких аугментациях и усреднить результат, или там Tailoring (https://www.group-telegram.com/in/gonzo_ML.com/392), оно тоже сюда. Но сейчас прям sputnik moment, особенно с o3 (https://www.group-telegram.com/in/gonzo_ML.com/3104). Есть и у других игроков что-то из этой серии, Gemini 2.0 Flash Thinking Mode (https://ai.google.dev/gemini-api/docs/thinking-mode) или QwQ (https://qwenlm.github.io/blog/qwq-32b-preview/).

Следующий год будет сильно про это.

2. SSM идут в массы.

За год появилось много новых SSM и SSM-Transformer гибридов (https://www.group-telegram.com/in/gonzo_ML.com/2919), и история продолжает развиваться. Из свежего, например, Bamba (https://huggingface.co/blog/bamba) или Falcon3-Mamba (https://huggingface.co/blog/falcon3).

3. Реальная конкуренция в мире LLM

Если год-два назад была примерно одна лучшая LLM -- от OpenAI, то теперь есть как минимум три топовых коммерческих: от Anthropic, OpenAI, Google, и несколько хороших открытых: Llama, Gemma, Qwen, да и ещё что-то наверное можно добавить. В повседневных делах у меня моделью #1 стал Claude 3.5 Sonnet, он вытеснил модели OpenAI как точку входа.

4. LLM теперь мультимодальные

Большинство топовых LLM уже вовсю мультимодальные, принимают на вход не только текст, но и звук с картинками. GPT, Gemini, Claude, Llama, ... все умеют что-то кроме текста. Тихо и без революций это просто стало реальностью.

5. LLM для написания кода стали реально полезны

Генерация кода за последний год очень прокачалась, с помощью моделей можно написать код гораздо быстрее. Я активно пользуюсь этим для генерации разного типового кода, например, для визуализации или обработки данных, это экономит мне кучу времени. Ради эксперимента также написал Flutter приложение с питоновским бэкендом за выходные, флаттера я перед этим не знал вообще. Без Claude/Copilot/Gemini хз сколько бы я это делал, точно не выходные.

Неидеально, в некоторых случаях не срабатывает, как мне нужно, но во многих срабатывает. После VSCode + Copilot или Colab со встроенным Gemini работать в Kaggle ноутбуке без этого вообще уныло, как без руки, начинаешь остро чувствовать потерянное время.

В 2017-м написал статью в Форбс про то, что "программисты в опасносте" (https://www.forbes.ru/tehnologii/341535-mashiny-vmesto-inzhenerov-pochemu-iskusstvennyy-intellekt-doberetsya-i-do), ну вот мы приближаемся.

С другой стороны прямо сейчас происходит большое разделение. Кто умел программировать, становится в разы и на порядки продуктивнее, а кто не умел -- имеет шансы и не стать вообще. "Богатые богатеют".

6. Генерация видео на подходе

Sora очень долго ехала от анонса до доступности, но зато за это время появилось сколько-то альтернативных наработок. Если в момент анонса OpenAI был примерно одним и единственным лидером, то сейчас уже это не так и мир многополярен.

7. Нобели за нейросети

Приятно.

Кроме того, нейросети уже вовсю меняют науку. Не то, чтобы это только в последний год происходило, но, кажется, количество понемногу переходит в качество.

8. Открытые модели рулят

Мне всегда казалось, что опенсорс примерно года на полтора отстаёт от коммерческих LLM, ну и в принципе, наверное, оно где-то так и есть, если смотреть на доступные способности там и там. Но всё равно, всё то, что появилось в опенсорсе (или просто в опен) продолжает удивлять -- новые ламы, джеммы и прочее разное намного лучше, чем всё что было ранее.

9. World models



group-telegram.com/gonzo_ML/3175
Create:
Last Update:

Попытался прикинуть в режиме блиц, что такого важного и интересного произошло в AI в этом году. Ниже результат примерно десятиминутного размышления, что быстро всплыло из памяти. Плюс ещё полчаса-час на то, чтобы это раскрыть. Наверняка что-то важное забыл и если бы я потратил больше test time compute, наверное, результат был бы точнее, но в таком режиме тоже интересно.

Итак, мой список, не то чтобы по важности, просто по порядку вспоминания.

1. Test-time compute

Примерно с o1 (https://openai.com/index/learning-to-reason-with-llms/) открылась эра test-time compute, появилось новое измерение, по которому можно скейлить модели.

Ну как появилось, в принципе его следы и раньше можно найти. Те же варианты прогнать CNN на нескольких аугментациях и усреднить результат, или там Tailoring (https://www.group-telegram.com/in/gonzo_ML.com/392), оно тоже сюда. Но сейчас прям sputnik moment, особенно с o3 (https://www.group-telegram.com/in/gonzo_ML.com/3104). Есть и у других игроков что-то из этой серии, Gemini 2.0 Flash Thinking Mode (https://ai.google.dev/gemini-api/docs/thinking-mode) или QwQ (https://qwenlm.github.io/blog/qwq-32b-preview/).

Следующий год будет сильно про это.

2. SSM идут в массы.

За год появилось много новых SSM и SSM-Transformer гибридов (https://www.group-telegram.com/in/gonzo_ML.com/2919), и история продолжает развиваться. Из свежего, например, Bamba (https://huggingface.co/blog/bamba) или Falcon3-Mamba (https://huggingface.co/blog/falcon3).

3. Реальная конкуренция в мире LLM

Если год-два назад была примерно одна лучшая LLM -- от OpenAI, то теперь есть как минимум три топовых коммерческих: от Anthropic, OpenAI, Google, и несколько хороших открытых: Llama, Gemma, Qwen, да и ещё что-то наверное можно добавить. В повседневных делах у меня моделью #1 стал Claude 3.5 Sonnet, он вытеснил модели OpenAI как точку входа.

4. LLM теперь мультимодальные

Большинство топовых LLM уже вовсю мультимодальные, принимают на вход не только текст, но и звук с картинками. GPT, Gemini, Claude, Llama, ... все умеют что-то кроме текста. Тихо и без революций это просто стало реальностью.

5. LLM для написания кода стали реально полезны

Генерация кода за последний год очень прокачалась, с помощью моделей можно написать код гораздо быстрее. Я активно пользуюсь этим для генерации разного типового кода, например, для визуализации или обработки данных, это экономит мне кучу времени. Ради эксперимента также написал Flutter приложение с питоновским бэкендом за выходные, флаттера я перед этим не знал вообще. Без Claude/Copilot/Gemini хз сколько бы я это делал, точно не выходные.

Неидеально, в некоторых случаях не срабатывает, как мне нужно, но во многих срабатывает. После VSCode + Copilot или Colab со встроенным Gemini работать в Kaggle ноутбуке без этого вообще уныло, как без руки, начинаешь остро чувствовать потерянное время.

В 2017-м написал статью в Форбс про то, что "программисты в опасносте" (https://www.forbes.ru/tehnologii/341535-mashiny-vmesto-inzhenerov-pochemu-iskusstvennyy-intellekt-doberetsya-i-do), ну вот мы приближаемся.

С другой стороны прямо сейчас происходит большое разделение. Кто умел программировать, становится в разы и на порядки продуктивнее, а кто не умел -- имеет шансы и не стать вообще. "Богатые богатеют".

6. Генерация видео на подходе

Sora очень долго ехала от анонса до доступности, но зато за это время появилось сколько-то альтернативных наработок. Если в момент анонса OpenAI был примерно одним и единственным лидером, то сейчас уже это не так и мир многополярен.

7. Нобели за нейросети

Приятно.

Кроме того, нейросети уже вовсю меняют науку. Не то, чтобы это только в последний год происходило, но, кажется, количество понемногу переходит в качество.

8. Открытые модели рулят

Мне всегда казалось, что опенсорс примерно года на полтора отстаёт от коммерческих LLM, ну и в принципе, наверное, оно где-то так и есть, если смотреть на доступные способности там и там. Но всё равно, всё то, что появилось в опенсорсе (или просто в опен) продолжает удивлять -- новые ламы, джеммы и прочее разное намного лучше, чем всё что было ранее.

9. World models

BY gonzo-обзоры ML статей


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/gonzo_ML/3175

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

"The result is on this photo: fiery 'greetings' to the invaders," the Security Service of Ukraine wrote alongside a photo showing several military vehicles among plumes of black smoke. "There are a lot of things that Telegram could have been doing this whole time. And they know exactly what they are and they've chosen not to do them. That's why I don't trust them," she said. But because group chats and the channel features are not end-to-end encrypted, Galperin said user privacy is potentially under threat. The company maintains that it cannot act against individual or group chats, which are “private amongst their participants,” but it will respond to requests in relation to sticker sets, channels and bots which are publicly available. During the invasion of Ukraine, Pavel Durov has wrestled with this issue a lot more prominently than he has before. Channels like Donbass Insider and Bellum Acta, as reported by Foreign Policy, started pumping out pro-Russian propaganda as the invasion began. So much so that the Ukrainian National Security and Defense Council issued a statement labeling which accounts are Russian-backed. Ukrainian officials, in potential violation of the Geneva Convention, have shared imagery of dead and captured Russian soldiers on the platform. Telegram has gained a reputation as the “secure” communications app in the post-Soviet states, but whenever you make choices about your digital security, it’s important to start by asking yourself, “What exactly am I securing? And who am I securing it from?” These questions should inform your decisions about whether you are using the right tool or platform for your digital security needs. Telegram is certainly not the most secure messaging app on the market right now. Its security model requires users to place a great deal of trust in Telegram’s ability to protect user data. For some users, this may be good enough for now. For others, it may be wiser to move to a different platform for certain kinds of high-risk communications.
from in


Telegram gonzo-обзоры ML статей
FROM American