Telegram Group & Telegram Channel
Adaptive Attention Span in Transformers
Sainbayar Sukhbaatar, Edouard Grave, Piotr Bojanowski, Armand Joulin
Статья: https://arxiv.org/abs/1905.07799
Бенчмарки: https://paperswithcode.com/paper/adaptive-attention-span-in-transformers

Работа идейно близкая к ACT: давайте теперь сделаем адаптивным attention span трансформера.

Проблема обычного трансформера в том, что размер контекста, по которому считается self-attention, фиксирован и кроме того не может быть большим, потому что вычисления и память растут квадратично. Для увеличения контекста недавно уже было несколько решений, например, Transformer XL или Sparse Transformer. В первом из них ввели нечто вроде рекуррентности по времени, а во втором сильно облегчили матрицу внимания за счёт факторизации. Здесь же авторы (все из FB) вводят адаптивность, слой сам определяет необходимый ему размер контекста, так что это сокращает вычислительную сложность трансформера и позволяет, где надо, иметь большой контекст.

Кроме адаптивности в обычный трансформер вводятся две модификации.

1) Относительные позиционные ембеддинги (из работы Shaw et.al, https://arxiv.org/abs/1803.02155)
2) Механизм кеширования (из работы Dai про Transformer XL, https://arxiv.org/abs/1901.02860)

Далее размер контекста (attention span) каждой головы self-attention’а выучивается независимо от других (это называется adaptive attention span) путём добавления кусочно-линейной невозрастающей функции, маскирующей attention span. Функция состоит из двух кусков: константная единица от нуля до z (выучиваемый параметр) и спадающий до нуля кусок от z до z+R (гиперпараметр).

Усовершенствованным вариантом является dynamic attention span, динамически изменяющий attention span в зависимости от текущего входа. Здесь параметр z является функцией от входа (соответствует одному полносвязному слою с сигмоидальной активацией).

Проверяли на датасетах text8 и enwiki8, пробовали модели двух размеров (маленькая: 12 слоёв и размер внутреннего эмбеддинга 512; и большая: 24 слоя и эмбеддинг 768; везде 8 голов attention’а).

Сравнивались с Transformer XL и с глубоким (64 слоя) символьным трансформером Al-Rfou (https://arxiv.org/abs/1808.04444). Большие модели получили SotA на обоих датасетах с меньшим числом параметров и с меньшими FLOPS’ами.

На практике оказывается, что нижние слои обычно оперируют коротким контекстом, а верхние -- более длинным (несколько голов используют контекст до нескольких тысяч).

В общем прикольно, работает. В целом это довольно прямолинейный перенос идеи ACT.

Всё ещё кипятите? Тогда мы идём к вам. Что там ещё у нас в сетках зашито и не является адаптивным?



group-telegram.com/gonzo_ML/99
Create:
Last Update:

Adaptive Attention Span in Transformers
Sainbayar Sukhbaatar, Edouard Grave, Piotr Bojanowski, Armand Joulin
Статья: https://arxiv.org/abs/1905.07799
Бенчмарки: https://paperswithcode.com/paper/adaptive-attention-span-in-transformers

Работа идейно близкая к ACT: давайте теперь сделаем адаптивным attention span трансформера.

Проблема обычного трансформера в том, что размер контекста, по которому считается self-attention, фиксирован и кроме того не может быть большим, потому что вычисления и память растут квадратично. Для увеличения контекста недавно уже было несколько решений, например, Transformer XL или Sparse Transformer. В первом из них ввели нечто вроде рекуррентности по времени, а во втором сильно облегчили матрицу внимания за счёт факторизации. Здесь же авторы (все из FB) вводят адаптивность, слой сам определяет необходимый ему размер контекста, так что это сокращает вычислительную сложность трансформера и позволяет, где надо, иметь большой контекст.

Кроме адаптивности в обычный трансформер вводятся две модификации.

1) Относительные позиционные ембеддинги (из работы Shaw et.al, https://arxiv.org/abs/1803.02155)
2) Механизм кеширования (из работы Dai про Transformer XL, https://arxiv.org/abs/1901.02860)

Далее размер контекста (attention span) каждой головы self-attention’а выучивается независимо от других (это называется adaptive attention span) путём добавления кусочно-линейной невозрастающей функции, маскирующей attention span. Функция состоит из двух кусков: константная единица от нуля до z (выучиваемый параметр) и спадающий до нуля кусок от z до z+R (гиперпараметр).

Усовершенствованным вариантом является dynamic attention span, динамически изменяющий attention span в зависимости от текущего входа. Здесь параметр z является функцией от входа (соответствует одному полносвязному слою с сигмоидальной активацией).

Проверяли на датасетах text8 и enwiki8, пробовали модели двух размеров (маленькая: 12 слоёв и размер внутреннего эмбеддинга 512; и большая: 24 слоя и эмбеддинг 768; везде 8 голов attention’а).

Сравнивались с Transformer XL и с глубоким (64 слоя) символьным трансформером Al-Rfou (https://arxiv.org/abs/1808.04444). Большие модели получили SotA на обоих датасетах с меньшим числом параметров и с меньшими FLOPS’ами.

На практике оказывается, что нижние слои обычно оперируют коротким контекстом, а верхние -- более длинным (несколько голов используют контекст до нескольких тысяч).

В общем прикольно, работает. В целом это довольно прямолинейный перенос идеи ACT.

Всё ещё кипятите? Тогда мы идём к вам. Что там ещё у нас в сетках зашито и не является адаптивным?

BY gonzo-обзоры ML статей




Share with your friend now:
group-telegram.com/gonzo_ML/99

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

At the start of 2018, the company attempted to launch an Initial Coin Offering (ICO) which would enable it to enable payments (and earn the cash that comes from doing so). The initial signals were promising, especially given Telegram’s user base is already fairly crypto-savvy. It raised an initial tranche of cash – worth more than a billion dollars – to help develop the coin before opening sales to the public. Unfortunately, third-party sales of coins bought in those initial fundraising rounds raised the ire of the SEC, which brought the hammer down on the whole operation. In 2020, officials ordered Telegram to pay a fine of $18.5 million and hand back much of the cash that it had raised. He said that since his platform does not have the capacity to check all channels, it may restrict some in Russia and Ukraine "for the duration of the conflict," but then reversed course hours later after many users complained that Telegram was an important source of information. The fake Zelenskiy account reached 20,000 followers on Telegram before it was shut down, a remedial action that experts say is all too rare. That hurt tech stocks. For the past few weeks, the 10-year yield has traded between 1.72% and 2%, as traders moved into the bond for safety when Russia headlines were ugly—and out of it when headlines improved. Now, the yield is touching its pandemic-era high. If the yield breaks above that level, that could signal that it’s on a sustainable path higher. Higher long-dated bond yields make future profits less valuable—and many tech companies are valued on the basis of profits forecast for many years in the future. In 2018, Russia banned Telegram although it reversed the prohibition two years later.
from in


Telegram gonzo-обзоры ML статей
FROM American