Telegram Group & Telegram Channel
An update on disrupting deceptive uses of AI
Nimmo & Flossman, OpenAI, 2024
Блог, отчет

Одна из тем, которая всех волнует в связи с развитием LLM – это capability uplift: когда злоумышленник, который умеет не очень много, с помощью LLM становится способным на большее. В основном это касается трех областей: биологическая безопасность (человек с любительскими познаниями в биологии учится синтезировать опасные вирусы), химическая (аналогично – как изготовить взрывчатку, если я ничего не умею) и кибербезопасность. История с кибербезопасностью мне кажется наиболее реалистичной, так как для выполнения инструкции по синтезу чего-нибудь физического тебе нужна лаборатория (хотя и это сейчас не прям проблема), а для выполнения кода тебе нужен только тот же компьютер, с которого ты ходишь в ChatGPT.

Мы уже видим по косвенным признакам, что злоумышленники интересуются применением LLM для своих грязных дел, а вот OpenAI (у которой есть доступ к чатам с ChatGPT) может наблюдать за этим напрямую – о чем они и рассказывают в отчете. Он, конечно, немного тенденциозно привязан к выборам (двум самым важным – в США и в Руанде, конечно же), но, тем не менее, достаточно интересен. Состоит отчет из основных выводов и наблюдений и двух групп разобранных кейсов – применение в кибероперациях и в информационных операциях.

В целом, OpenAI делает следующие выводы:

1. Атакующие всячески экспериментируют с моделями и находят для них новые применения, но к появлению качественных изменений в тактиках и техниках это не приводит, равно как и к качественному увеличению эффективности их кибер- и информационных операций.
2. Злоумышленники используют ChatGPT для промежуточных стадий атаки – когда у них уже есть, например, каналы для распространения постов в соцмедиа или вредоносного ПО, но до непосредственных атак/начала распространения дезинформации.
3. Компании, создающие ИИ-инструменты, сами становятся целями атак: одна «предположительно, китайская» группировка отправляла сотрудникам OpenAI целевой фишинг.



group-telegram.com/llmsecurity/339
Create:
Last Update:

An update on disrupting deceptive uses of AI
Nimmo & Flossman, OpenAI, 2024
Блог, отчет

Одна из тем, которая всех волнует в связи с развитием LLM – это capability uplift: когда злоумышленник, который умеет не очень много, с помощью LLM становится способным на большее. В основном это касается трех областей: биологическая безопасность (человек с любительскими познаниями в биологии учится синтезировать опасные вирусы), химическая (аналогично – как изготовить взрывчатку, если я ничего не умею) и кибербезопасность. История с кибербезопасностью мне кажется наиболее реалистичной, так как для выполнения инструкции по синтезу чего-нибудь физического тебе нужна лаборатория (хотя и это сейчас не прям проблема), а для выполнения кода тебе нужен только тот же компьютер, с которого ты ходишь в ChatGPT.

Мы уже видим по косвенным признакам, что злоумышленники интересуются применением LLM для своих грязных дел, а вот OpenAI (у которой есть доступ к чатам с ChatGPT) может наблюдать за этим напрямую – о чем они и рассказывают в отчете. Он, конечно, немного тенденциозно привязан к выборам (двум самым важным – в США и в Руанде, конечно же), но, тем не менее, достаточно интересен. Состоит отчет из основных выводов и наблюдений и двух групп разобранных кейсов – применение в кибероперациях и в информационных операциях.

В целом, OpenAI делает следующие выводы:

1. Атакующие всячески экспериментируют с моделями и находят для них новые применения, но к появлению качественных изменений в тактиках и техниках это не приводит, равно как и к качественному увеличению эффективности их кибер- и информационных операций.
2. Злоумышленники используют ChatGPT для промежуточных стадий атаки – когда у них уже есть, например, каналы для распространения постов в соцмедиа или вредоносного ПО, но до непосредственных атак/начала распространения дезинформации.
3. Компании, создающие ИИ-инструменты, сами становятся целями атак: одна «предположительно, китайская» группировка отправляла сотрудникам OpenAI целевой фишинг.

BY llm security и каланы




Share with your friend now:
group-telegram.com/llmsecurity/339

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Perpetrators of such fraud use various marketing techniques to attract subscribers on their social media channels. Russians and Ukrainians are both prolific users of Telegram. They rely on the app for channels that act as newsfeeds, group chats (both public and private), and one-to-one communication. Since the Russian invasion of Ukraine, Telegram has remained an important lifeline for both Russians and Ukrainians, as a way of staying aware of the latest news and keeping in touch with loved ones. For Oleksandra Tsekhanovska, head of the Hybrid Warfare Analytical Group at the Kyiv-based Ukraine Crisis Media Center, the effects are both near- and far-reaching. This ability to mix the public and the private, as well as the ability to use bots to engage with users has proved to be problematic. In early 2021, a database selling phone numbers pulled from Facebook was selling numbers for $20 per lookup. Similarly, security researchers found a network of deepfake bots on the platform that were generating images of people submitted by users to create non-consensual imagery, some of which involved children.
from in


Telegram llm security и каланы
FROM American