Telegram Group & Telegram Channel
⭐️ Awesome-LLM-Synthetic-Data - курируемый список ресурсов, инструментов и исследований, связанных с использованием синтетических данных для больших языковых моделей (LLM).

Чем полезен:
- Централизованная база знаний:
Вместо того чтобы самостоятельно искать статьи, библиотеки и исследования по синтетическим данным, здесь собрана готовая, структурированная подборка материалов.

- Актуальные инструменты и методы:
Репозиторий включает ссылки на инструменты для генерации синтетических данных, методы оценки их качества и примеры интеграции в пайплайны обучения LLM. Для практикующего специалиста это может стать источником идей для оптимизации процессов обучения и экспериментов с новыми методами.

- Поддержка исследований и разработки:
Если ваша работа связана с решением проблем, где реальных данных не хватает или данные зашумлены, использование синтетически данных может значительно улучшить результаты. Этот репозиторий поможет изучить современные подходы к генерации и использованию синтетических данных, что особенно актуально при разработке и тестировании новых моделей.

Github

@machinelearning_interview



group-telegram.com/machinelearning_interview/1549
Create:
Last Update:

⭐️ Awesome-LLM-Synthetic-Data - курируемый список ресурсов, инструментов и исследований, связанных с использованием синтетических данных для больших языковых моделей (LLM).

Чем полезен:
- Централизованная база знаний:
Вместо того чтобы самостоятельно искать статьи, библиотеки и исследования по синтетическим данным, здесь собрана готовая, структурированная подборка материалов.

- Актуальные инструменты и методы:
Репозиторий включает ссылки на инструменты для генерации синтетических данных, методы оценки их качества и примеры интеграции в пайплайны обучения LLM. Для практикующего специалиста это может стать источником идей для оптимизации процессов обучения и экспериментов с новыми методами.

- Поддержка исследований и разработки:
Если ваша работа связана с решением проблем, где реальных данных не хватает или данные зашумлены, использование синтетически данных может значительно улучшить результаты. Этот репозиторий поможет изучить современные подходы к генерации и использованию синтетических данных, что особенно актуально при разработке и тестировании новых моделей.

Github

@machinelearning_interview

BY Machine learning Interview








Share with your friend now:
group-telegram.com/machinelearning_interview/1549

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

This provided opportunity to their linked entities to offload their shares at higher prices and make significant profits at the cost of unsuspecting retail investors. "And that set off kind of a battle royale for control of the platform that Durov eventually lost," said Nathalie Maréchal of the Washington advocacy group Ranking Digital Rights. Artem Kliuchnikov and his family fled Ukraine just days before the Russian invasion. On December 23rd, 2020, Pavel Durov posted to his channel that the company would need to start generating revenue. In early 2021, he added that any advertising on the platform would not use user data for targeting, and that it would be focused on “large one-to-many channels.” He pledged that ads would be “non-intrusive” and that most users would simply not notice any change. In the United States, Telegram's lower public profile has helped it mostly avoid high level scrutiny from Congress, but it has not gone unnoticed.
from in


Telegram Machine learning Interview
FROM American