Замена растворителя упростила производство светящихся полимеров из европия
Ученые нашли способ задавать свойства синтетическим материалам на основе европия — редкоземельного металла, излучающего красное свечение под ультрафиолетом, — применяя в производстве различные спирты. Предложенный метод позволил регулировать структуру продуктов, их стабильность и эффективность люминесценции. При этом нестабильные соединения со временем сами перестраивались в прочные полимеры, которые светились ярче аналогов и выдерживали нагрев до 300°C. Полученные данные позволят синтезировать новые материалы с контролируемыми оптическими свойствами для биомедицины, создания «умных» сенсоров и датчиков, а также для защиты денег и документов от подделок. Результаты исследования, поддержанного грантом Российского научного фонда (РНФ), опубликованы в журнале Inorganic Chemistry Communications.
https://mendeleev.info/zamena-rastvoritelya-uprostila-proizvodstvo-svetyashhihsya-polimerov-iz-evropiya/
Ученые нашли способ задавать свойства синтетическим материалам на основе европия — редкоземельного металла, излучающего красное свечение под ультрафиолетом, — применяя в производстве различные спирты. Предложенный метод позволил регулировать структуру продуктов, их стабильность и эффективность люминесценции. При этом нестабильные соединения со временем сами перестраивались в прочные полимеры, которые светились ярче аналогов и выдерживали нагрев до 300°C. Полученные данные позволят синтезировать новые материалы с контролируемыми оптическими свойствами для биомедицины, создания «умных» сенсоров и датчиков, а также для защиты денег и документов от подделок. Результаты исследования, поддержанного грантом Российского научного фонда (РНФ), опубликованы в журнале Inorganic Chemistry Communications.
https://mendeleev.info/zamena-rastvoritelya-uprostila-proizvodstvo-svetyashhihsya-polimerov-iz-evropiya/
Mendeleev.info
Замена растворителя упростила производство светящихся полимеров из европия - Mendeleev.info
Ученые нашли способ задавать свойства синтетическим материалам на основе европия — редкоземельного металла, излучающего красное свечение под ультрафиолетом, — применяя в производстве различные спирты. Предложенный метод позволил регулировать структуру продуктов…
Forwarded from Виртуальный музей химии
Химия на марках. Выпуск 18: юбилей смерти Менделеева
Продолжение осмотра, новые залы «Виртуального музея химии» не означает закрытия старых залов и прекращение старых серий материалов. Мы продолжаем рассказ о почтовых марках и химии. Четный выпуск - а, значит, сегодня пора рассказать о почтовой марке из нашей страны, причем в хронологическом порядке. В прошлый раз мы перешли в 1957 год, рассказав о марке, посвященной 100-летию Алексея Баха. В том же году отмечался еще один химический юбилей: 50 лет со дня смерти Дмитрия Ивановича Менделеева, величайшего химика и renessaince man отечественной науки. В те годы отмечать юбилеи смерти было весьма принято.
Марка, созданная художником и автором эскизов многих почтовых марок того времени, Юрием Гржешкевичем, имела номинал в 40 копеек.
#химиянамарках
Материал подготовлен ИОНХ РАН для проекта «Виртуальный музей химии: продолжение осмотра» при грантовой поддержке Минобрнауки России в рамках федерального проекта «Популяризация науки и технологий». Проект выполняется в рамках Десятилетия науки и технологий
Продолжение осмотра, новые залы «Виртуального музея химии» не означает закрытия старых залов и прекращение старых серий материалов. Мы продолжаем рассказ о почтовых марках и химии. Четный выпуск - а, значит, сегодня пора рассказать о почтовой марке из нашей страны, причем в хронологическом порядке. В прошлый раз мы перешли в 1957 год, рассказав о марке, посвященной 100-летию Алексея Баха. В том же году отмечался еще один химический юбилей: 50 лет со дня смерти Дмитрия Ивановича Менделеева, величайшего химика и renessaince man отечественной науки. В те годы отмечать юбилеи смерти было весьма принято.
Марка, созданная художником и автором эскизов многих почтовых марок того времени, Юрием Гржешкевичем, имела номинал в 40 копеек.
#химиянамарках
Материал подготовлен ИОНХ РАН для проекта «Виртуальный музей химии: продолжение осмотра» при грантовой поддержке Минобрнауки России в рамках федерального проекта «Популяризация науки и технологий». Проект выполняется в рамках Десятилетия науки и технологий
❤3
Forwarded from Виртуальный музей химии
Территория химии. Выпуск 2: памятник Зинаиде Ермольевой в Ростове-на-Дону
Сегодня мы продолжаем пополнение экспонатами новыого виртуального зала музея размером во всю Россию и более. Этот зал называется «Территория химии», и в нем мы размещаем научные химические учреждения, памятники и мемориальные доски химикам, химические заводы и другие объекты, связанные с химией на карте.
Сегодня мы с вами и автором нашего проекта, сотрудником ИОНХ РАН им. Н.С. Курнакова, Дмитрием Ямбулатовым, в Ростов-на-Дону. где расположен памятник известному советскому микробиологу, которая стала пионером производства одного важнейшего вещества - пенициллина.
https://chem-museum.ru/territoriya-himii/vypusk-2-pamyatnik-zinaide-ermolevoj-v-rostove-na-donu/
#территорияхимии
Материал подготовлен ИОНХ РАН для проекта «Виртуальный музей химии: продолжение осмотра» при грантовой поддержке Минобрнауки России в рамках федерального проекта «Популяризация науки и технологий». Проект выполняется в рамках Десятилетия науки и технологий.
Сегодня мы продолжаем пополнение экспонатами новыого виртуального зала музея размером во всю Россию и более. Этот зал называется «Территория химии», и в нем мы размещаем научные химические учреждения, памятники и мемориальные доски химикам, химические заводы и другие объекты, связанные с химией на карте.
Сегодня мы с вами и автором нашего проекта, сотрудником ИОНХ РАН им. Н.С. Курнакова, Дмитрием Ямбулатовым, в Ростов-на-Дону. где расположен памятник известному советскому микробиологу, которая стала пионером производства одного важнейшего вещества - пенициллина.
https://chem-museum.ru/territoriya-himii/vypusk-2-pamyatnik-zinaide-ermolevoj-v-rostove-na-donu/
#территорияхимии
Материал подготовлен ИОНХ РАН для проекта «Виртуальный музей химии: продолжение осмотра» при грантовой поддержке Минобрнауки России в рамках федерального проекта «Популяризация науки и технологий». Проект выполняется в рамках Десятилетия науки и технологий.
👍1
Forwarded from Виртуальный музей химии
День в истории химии: сэр Френсис Гоуленд Хопкинс
164 года назад родился британский биохимик сэр Френсис Гоуленд Хопкинс, который в 1929 году был удостоен Нобелевской премии по физиологии или медицине. Выбора не стать известным, у него особо не было: прапрадед Хопкинса командовал кораблем во время Трафальгарского сражения. Среди других предков нашего героя можно упомянуть генерала-консула Гавайских островов Мэнли Хопкинса, старший сын которого, Джерард Мэнли Хопкинс, стал известным поэтом.
Семья решила, что Хопкинс будет работать клерком в страховой компании, и он-таки проработал шесть месяцев в офисе, но потом внезапно написал статью о «фиолетовом дыме», который выпускают жуки-бомбардиры. И статью приняли в научный журнал The Entomologist. По словам самого Хопкинса, он «с тех пор биохимик в душе».
С тех пор он занимался многим. Но главное - сначала он открыл неведомую аминокислоту триптофан, потом показал, что она относится к числу незаменимых (и сам ввел это понятие - незаменимые аминокислоты), а потом показал, что, помимо незаменимых аминокислот, для нормального роста организма, нужны еще какие-то вещества. Те самые, о существовании которых догадался врач Христиан Эйкман, исследовавший болезнь бери-бери, те самые, которые польский химик Казимир Функ назвал витаминами. Эйкман получил Нобелевскую премию, Хопкинс - получил, Функ - нет. Так тоже бывает.
#деньвисториихимии
Материал подготовлен ИОНХ РАН для проекта «Виртуальный музей химии: продолжение осмотра» при грантовой поддержке Минобрнауки России в рамках федерального проекта «Популяризация науки и технологий». Проект выполняется в рамках Десятилетия науки и технологий
164 года назад родился британский биохимик сэр Френсис Гоуленд Хопкинс, который в 1929 году был удостоен Нобелевской премии по физиологии или медицине. Выбора не стать известным, у него особо не было: прапрадед Хопкинса командовал кораблем во время Трафальгарского сражения. Среди других предков нашего героя можно упомянуть генерала-консула Гавайских островов Мэнли Хопкинса, старший сын которого, Джерард Мэнли Хопкинс, стал известным поэтом.
Семья решила, что Хопкинс будет работать клерком в страховой компании, и он-таки проработал шесть месяцев в офисе, но потом внезапно написал статью о «фиолетовом дыме», который выпускают жуки-бомбардиры. И статью приняли в научный журнал The Entomologist. По словам самого Хопкинса, он «с тех пор биохимик в душе».
С тех пор он занимался многим. Но главное - сначала он открыл неведомую аминокислоту триптофан, потом показал, что она относится к числу незаменимых (и сам ввел это понятие - незаменимые аминокислоты), а потом показал, что, помимо незаменимых аминокислот, для нормального роста организма, нужны еще какие-то вещества. Те самые, о существовании которых догадался врач Христиан Эйкман, исследовавший болезнь бери-бери, те самые, которые польский химик Казимир Функ назвал витаминами. Эйкман получил Нобелевскую премию, Хопкинс - получил, Функ - нет. Так тоже бывает.
#деньвисториихимии
Материал подготовлен ИОНХ РАН для проекта «Виртуальный музей химии: продолжение осмотра» при грантовой поддержке Минобрнауки России в рамках федерального проекта «Популяризация науки и технологий». Проект выполняется в рамках Десятилетия науки и технологий
❤1
Важные достижения в области химии фторированных сложных эфиров
Ученые из Института общей и неорганической химии им. Н.С. Курнакова РАН изучили закономерности и особенности важного технологического процесса, связанного с получением фторированных эфиров. Рассмотренный метод основан на процессе реакционной дистилляции с переэтерификацией изопропилацетата и гептафторбутанола. Целевым продуктом таких превращений является важный для применения в электрохимии и электронике фторированный сложный эфир, гептафторбутилацет. Результаты работы опубликованы в журнале Chemical Engineering Research and Design.
https://mendeleev.info/vazhnye-dostizheniya-v-oblasti-himii-ftorirovannyh-slozhnyh-efirov/
Ученые из Института общей и неорганической химии им. Н.С. Курнакова РАН изучили закономерности и особенности важного технологического процесса, связанного с получением фторированных эфиров. Рассмотренный метод основан на процессе реакционной дистилляции с переэтерификацией изопропилацетата и гептафторбутанола. Целевым продуктом таких превращений является важный для применения в электрохимии и электронике фторированный сложный эфир, гептафторбутилацет. Результаты работы опубликованы в журнале Chemical Engineering Research and Design.
https://mendeleev.info/vazhnye-dostizheniya-v-oblasti-himii-ftorirovannyh-slozhnyh-efirov/
❤3
Forwarded from Виртуальный музей химии
This media is not supported in your browser
VIEW IN TELEGRAM
Химический быт в видеозарисовках. Работаем с натрием
Мы продолжаем цикл авторских видео о «химической рутине» в нашем музее. Слово - сотруднику ИОНХ РАН Дмитрию Ямбулатову.
На видео натрий - щелочной металл, очень пластичный, его легко резать ножом или скальпелем. Мы храним его в большом сосуде под слоем минерального масла, для того чтобы избежать взаимодействия активного металла с влагой и кислородом воздуха.
Но несколько раз в году достаем большой кусок, режем на маленькие под слоем гексана и переносим в стеклянный сосуд из темного стекла с широким притертым горлышком. Там уже храним под слоем диоксана, можно также использовать более дешевый керосин.
В предыдущих роликах из нашей лаборатории вы могли узнать, что мы используем натрий для осушения растворителей.
#бытхимика
#видео
Материал подготовлен ИОНХ РАН для проекта «Виртуальный музей химии: продолжение осмотра» при грантовой поддержке Минобрнауки России в рамках федерального проекта «Популяризация науки и технологий». Проект выполняется в рамках Десятилетия науки и технологий
Мы продолжаем цикл авторских видео о «химической рутине» в нашем музее. Слово - сотруднику ИОНХ РАН Дмитрию Ямбулатову.
На видео натрий - щелочной металл, очень пластичный, его легко резать ножом или скальпелем. Мы храним его в большом сосуде под слоем минерального масла, для того чтобы избежать взаимодействия активного металла с влагой и кислородом воздуха.
Но несколько раз в году достаем большой кусок, режем на маленькие под слоем гексана и переносим в стеклянный сосуд из темного стекла с широким притертым горлышком. Там уже храним под слоем диоксана, можно также использовать более дешевый керосин.
В предыдущих роликах из нашей лаборатории вы могли узнать, что мы используем натрий для осушения растворителей.
#бытхимика
#видео
Материал подготовлен ИОНХ РАН для проекта «Виртуальный музей химии: продолжение осмотра» при грантовой поддержке Минобрнауки России в рамках федерального проекта «Популяризация науки и технологий». Проект выполняется в рамках Десятилетия науки и технологий
👍2
Forwarded from Виртуальный музей химии
This media is not supported in your browser
VIEW IN TELEGRAM
Химический быт в видеозарисовках. Калий
Мы продолжаем цикл авторских видео о «химической рутине» в нашем музее. Слово - сотруднику ИОНХ РАН Дмитрию Ямбулатову. Как и в предыдущих двух выпусках, мы снова посмотрим простые вещества на небольших видео.
На сегодняшнем видео - калий. Калий - элемент таблицы Менделеева под номером 19. Простое вещество калий - щелочной металл, очень активный, реагирует даже с влагой воздуха. Он еще более активен, чем натрий, поэтому для своих целей мы его режем под слоем углеводорода - гексана.
#бытхимика
#видео
Материал подготовлен ИОНХ РАН для проекта «Виртуальный музей химии: продолжение осмотра» при грантовой поддержке Минобрнауки России в рамках федерального проекта «Популяризация науки и технологий». Проект выполняется в рамках Десятилетия науки и технологий
Мы продолжаем цикл авторских видео о «химической рутине» в нашем музее. Слово - сотруднику ИОНХ РАН Дмитрию Ямбулатову. Как и в предыдущих двух выпусках, мы снова посмотрим простые вещества на небольших видео.
На сегодняшнем видео - калий. Калий - элемент таблицы Менделеева под номером 19. Простое вещество калий - щелочной металл, очень активный, реагирует даже с влагой воздуха. Он еще более активен, чем натрий, поэтому для своих целей мы его режем под слоем углеводорода - гексана.
#бытхимика
#видео
Материал подготовлен ИОНХ РАН для проекта «Виртуальный музей химии: продолжение осмотра» при грантовой поддержке Минобрнауки России в рамках федерального проекта «Популяризация науки и технологий». Проект выполняется в рамках Десятилетия науки и технологий
❤1👍1
Forwarded from Виртуальный музей химии
День в истории химии: Пол Берг
Почти век, а точнее - 99 лет назад, в Бруклине родился Пол Берг, ученый, одним из первых заставивший многих химиков ворчать: «опять Нобелевскую премию по химии за биологию дали».
Действительно, Берг с самого начала своей карьеры пошел по стезе биохимии. Отслужив на подлодке во время Второй мировой, он включился в науку очень быстро - уже в докторской (по-нашему - в кандидатской) разобрался с биосинтезом метильной группы в метионине, до 40 лет стал академиком НАН США, а затем добрался до рекомбинантной ДНК и генной инженерии. За эти работы он получил Нобелевскую премию по химии 1980 года, вызвав неудовольствие «классических» химиков.
#деньвисториихимии
Материал подготовлен ИОНХ РАН для проекта «Виртуальный музей химии: продолжение осмотра» при грантовой поддержке Минобрнауки России в рамках федерального проекта «Популяризация науки и технологий». Проект выполняется в рамках Десятилетия науки и технологий
Почти век, а точнее - 99 лет назад, в Бруклине родился Пол Берг, ученый, одним из первых заставивший многих химиков ворчать: «опять Нобелевскую премию по химии за биологию дали».
Действительно, Берг с самого начала своей карьеры пошел по стезе биохимии. Отслужив на подлодке во время Второй мировой, он включился в науку очень быстро - уже в докторской (по-нашему - в кандидатской) разобрался с биосинтезом метильной группы в метионине, до 40 лет стал академиком НАН США, а затем добрался до рекомбинантной ДНК и генной инженерии. За эти работы он получил Нобелевскую премию по химии 1980 года, вызвав неудовольствие «классических» химиков.
#деньвисториихимии
Материал подготовлен ИОНХ РАН для проекта «Виртуальный музей химии: продолжение осмотра» при грантовой поддержке Минобрнауки России в рамках федерального проекта «Популяризация науки и технологий». Проект выполняется в рамках Десятилетия науки и технологий
❤1
Forwarded from Виртуальный музей химии
Ломоносов о растворах в «Науке и жизни»
Продолжаем рассказывать вам о пополнениях нашей цифровой библиотеки.
Сегодня на нашей цифровой полке текст, вышедший более века назад в журнале «Наука и жизнь».
Он интересен дважды. Во-первых, эта статья рассказывает о трудах Ломоносова в области растворов. А во-вторых, она написана очень интересным химиком.
Этот человек большую и самую активную часть своей очень долгой жизни (52 года из 93) он прожил и проработал на территории Российской империи и был сначала ординарным членом Петербургской академии наук, а потом, когда с началом Первой мировой и затем - революции Павел Вальден стал Паулем Вальденом и уехал в Германию, стал почетным иностранным членом АН СССР.
Свое главное открытие, взаимное превращение стереоизомеров (Вальденовское обращение), он сделал, будучи ректором Рижского университета в Российской империи.
С 1911 года он официально - оставаясь в Риге - руководил той самой Химической лабораторией Академии наук, которую основал Ломоносов и с которой и началась химия в России.
https://chem-museum.ru/biblioteka/lomonosov-o-rastvorah-v-nauke-i-zhizni/
#библиотека
Материал подготовлен ИОНХ РАН для проекта «Виртуальный музей химии: продолжение осмотра» при грантовой поддержке Минобрнауки России в рамках федерального проекта «Популяризация науки и технологий». Проект выполняется в рамках Десятилетия науки и технологий
Продолжаем рассказывать вам о пополнениях нашей цифровой библиотеки.
Сегодня на нашей цифровой полке текст, вышедший более века назад в журнале «Наука и жизнь».
Он интересен дважды. Во-первых, эта статья рассказывает о трудах Ломоносова в области растворов. А во-вторых, она написана очень интересным химиком.
Этот человек большую и самую активную часть своей очень долгой жизни (52 года из 93) он прожил и проработал на территории Российской империи и был сначала ординарным членом Петербургской академии наук, а потом, когда с началом Первой мировой и затем - революции Павел Вальден стал Паулем Вальденом и уехал в Германию, стал почетным иностранным членом АН СССР.
Свое главное открытие, взаимное превращение стереоизомеров (Вальденовское обращение), он сделал, будучи ректором Рижского университета в Российской империи.
С 1911 года он официально - оставаясь в Риге - руководил той самой Химической лабораторией Академии наук, которую основал Ломоносов и с которой и началась химия в России.
https://chem-museum.ru/biblioteka/lomonosov-o-rastvorah-v-nauke-i-zhizni/
#библиотека
Материал подготовлен ИОНХ РАН для проекта «Виртуальный музей химии: продолжение осмотра» при грантовой поддержке Минобрнауки России в рамках федерального проекта «Популяризация науки и технологий». Проект выполняется в рамках Десятилетия науки и технологий
❤1
Forwarded from Виртуальный музей химии
День в истории химии: Александр Зайцев
180 лет назад в Казани родился один из самых ярких представителей Казанской химической школы, верный ученик и продолжатель дела Александра Михайловича Бутлерова, его полный тезка, Александр Михайлович Зайцев.
Став самостоятельным исследователем, Зайцев продолжил развивать теорию химического строения своего учителя, провел множество синтезов (а реакция получения вторичных спиртов цинком и алкилгалогенидами стала называться реакцией Вагнера-Зайцева), установил местонахождение двойной связи в олеиновой кислоте и узнал еще много нового в химии жирных кислот.
#деньвисториихимии
Материал подготовлен ИОНХ РАН для проекта «Виртуальный музей химии: продолжение осмотра» при грантовой поддержке Минобрнауки России в рамках федерального проекта «Популяризация науки и технологий». Проект выполняется в рамках Десятилетия науки и технологий
180 лет назад в Казани родился один из самых ярких представителей Казанской химической школы, верный ученик и продолжатель дела Александра Михайловича Бутлерова, его полный тезка, Александр Михайлович Зайцев.
Став самостоятельным исследователем, Зайцев продолжил развивать теорию химического строения своего учителя, провел множество синтезов (а реакция получения вторичных спиртов цинком и алкилгалогенидами стала называться реакцией Вагнера-Зайцева), установил местонахождение двойной связи в олеиновой кислоте и узнал еще много нового в химии жирных кислот.
#деньвисториихимии
Материал подготовлен ИОНХ РАН для проекта «Виртуальный музей химии: продолжение осмотра» при грантовой поддержке Минобрнауки России в рамках федерального проекта «Популяризация науки и технологий». Проект выполняется в рамках Десятилетия науки и технологий
❤2
Forwarded from Виртуальный музей химии
День в истории химии: Джон Нортроп
134 года назад в городе Йонкерс в штате Нью-Йорк родится Джон Хоуард (Говард) Нортроп. Сын зоолога, погибшего от взрыва в лаборатории за две недели до его рождения, отец Алисы - жены нобелевского лауреата вирусолога Фредерика Роббинса.
Нортроп сделал два важнейших открытия, проложивших дорогу современной биохимии. Во-первых он, вслед за Джеймсом Самнером, показал белковую природу ферментов. А во-вторых, он сумел получить белки, а затем и вирусы в кристаллической форме, что открыло путь для их рентгеноструктурного исследования.
Биохимик, проживший удивительно плодотворную и долгую жизнь, и покончивший с собой в 95 лет, потому что не стало ради кого жить.
#деньвисториихимии
Материал подготовлен ИОНХ РАН для проекта «Виртуальный музей химии: продолжение осмотра» при грантовой поддержке Минобрнауки России в рамках федерального проекта «Популяризация науки и технологий». Проект выполняется в рамках Десятилетия науки и технологий
134 года назад в городе Йонкерс в штате Нью-Йорк родится Джон Хоуард (Говард) Нортроп. Сын зоолога, погибшего от взрыва в лаборатории за две недели до его рождения, отец Алисы - жены нобелевского лауреата вирусолога Фредерика Роббинса.
Нортроп сделал два важнейших открытия, проложивших дорогу современной биохимии. Во-первых он, вслед за Джеймсом Самнером, показал белковую природу ферментов. А во-вторых, он сумел получить белки, а затем и вирусы в кристаллической форме, что открыло путь для их рентгеноструктурного исследования.
Биохимик, проживший удивительно плодотворную и долгую жизнь, и покончивший с собой в 95 лет, потому что не стало ради кого жить.
#деньвисториихимии
Материал подготовлен ИОНХ РАН для проекта «Виртуальный музей химии: продолжение осмотра» при грантовой поддержке Минобрнауки России в рамках федерального проекта «Популяризация науки и технологий». Проект выполняется в рамках Десятилетия науки и технологий
❤2
Онлайн-инструмент поможет химикам анализировать свойства красителей
Ученые создали онлайн-инструмент для простого и быстрого анализа сольватохромных свойств красителей — их способности менять цвет в зависимости от растворителя. Разработка представляет собой сайт с загруженной базой данной характеристик растворителей. На нем исследователи могут ввести спектральные данные материалов, с которыми они работают, и узнать, как краситель будет взаимодействовать с растворителем. Инструмент снизит риск ошибок и ускорит обработку больших объемов спектральных данных, которые применимы в флуоресцентной микроскопии и проектировании оптических устройств. Результаты исследования, поддержанного грантом Российского научного фонда (РНФ), опубликованы в журнале Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy.
https://mendeleev.info/onlajn-instrument-pomozhet-himikam-analizirovat-svojstva-krasitelej/
Ученые создали онлайн-инструмент для простого и быстрого анализа сольватохромных свойств красителей — их способности менять цвет в зависимости от растворителя. Разработка представляет собой сайт с загруженной базой данной характеристик растворителей. На нем исследователи могут ввести спектральные данные материалов, с которыми они работают, и узнать, как краситель будет взаимодействовать с растворителем. Инструмент снизит риск ошибок и ускорит обработку больших объемов спектральных данных, которые применимы в флуоресцентной микроскопии и проектировании оптических устройств. Результаты исследования, поддержанного грантом Российского научного фонда (РНФ), опубликованы в журнале Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy.
https://mendeleev.info/onlajn-instrument-pomozhet-himikam-analizirovat-svojstva-krasitelej/
Mendeleev.info
Онлайн-инструмент поможет химикам анализировать свойства красителей - Mendeleev.info
Ученые создали онлайн-инструмент для простого и быстрого анализа сольватохромных свойств красителей — их способности менять цвет в зависимости от растворителя. Разработка представляет собой сайт с загруженной базой данной характеристик растворителей. На нем…
❤🔥1🤬1🤡1💊1
Forwarded from Виртуальный музей химии
Химия на почтовых марках. Выпуск 19
Мы продолжаем рассказ о почтовых марках и химии. Выпуск у нас нечётный, а, значит, сегодня пора рассказать о почтовой марке из-за рубежа. И сегодня у нас марка, вышедшая в Федеративной Республике Германии в 1964 году.
Эта марка достоинством в 10 пфеннигов (да, в Германии тогда марки были и почтовыми знаками, и денежными, одна марка - 100 пфеннигов), посвящена сну, который увидел великий химик Фридрих Август Кекуле. Ему приснилась змея, кусающая собственный хвост, и он понял, как устроена молекула бензола, и в следующем году в статье, выходные данные которой указаны ниже, предложил шестичленную структуру с «бегущими» по ней тремя двойными связями. Позже, когда мы узнали о существовании ядер и электронов у атомов, мы смогли понять, как на самом деле устроены ароматические соединения. А тогда прозрение было настолько неожиданным и нестандартным, что не сразу нашло признание у всех химиков (идея Кекуле даже высмеивалась в карикатуре с танцующими обезьянами).
Aug. Kekulé (1865). "Sur la constitution des substances aromatiques". Bulletin de la Société Chimique de Paris. 3 (2): 98–110.
#химиянамарках
Материал подготовлен ИОНХ РАН для проекта «Виртуальный музей химии: продолжение осмотра» при грантовой поддержке Минобрнауки России в рамках федерального проекта «Популяризация науки и технологий». Проект выполняется в рамках Десятилетия науки и технологий
Мы продолжаем рассказ о почтовых марках и химии. Выпуск у нас нечётный, а, значит, сегодня пора рассказать о почтовой марке из-за рубежа. И сегодня у нас марка, вышедшая в Федеративной Республике Германии в 1964 году.
Эта марка достоинством в 10 пфеннигов (да, в Германии тогда марки были и почтовыми знаками, и денежными, одна марка - 100 пфеннигов), посвящена сну, который увидел великий химик Фридрих Август Кекуле. Ему приснилась змея, кусающая собственный хвост, и он понял, как устроена молекула бензола, и в следующем году в статье, выходные данные которой указаны ниже, предложил шестичленную структуру с «бегущими» по ней тремя двойными связями. Позже, когда мы узнали о существовании ядер и электронов у атомов, мы смогли понять, как на самом деле устроены ароматические соединения. А тогда прозрение было настолько неожиданным и нестандартным, что не сразу нашло признание у всех химиков (идея Кекуле даже высмеивалась в карикатуре с танцующими обезьянами).
Aug. Kekulé (1865). "Sur la constitution des substances aromatiques". Bulletin de la Société Chimique de Paris. 3 (2): 98–110.
#химиянамарках
Материал подготовлен ИОНХ РАН для проекта «Виртуальный музей химии: продолжение осмотра» при грантовой поддержке Минобрнауки России в рамках федерального проекта «Популяризация науки и технологий». Проект выполняется в рамках Десятилетия науки и технологий
❤4👍3
Forwarded from Виртуальный музей химии
Мировой эфир и Дмитрий Менделеев
Продолжаем рассказывать вам о пополнениях нашей цифровой библиотеки.
Сегодня на нашей цифровой полке - книга, которая показывает, что и гений может ошибаться и упорствовать в своих заблуждениях.
За Дмитрием Ивановичем Менделеевым числится множество открытий, технических проектов, изобретений (ну, кроме водки в 40 градусов - это точно не он). Многие из них - гениальны и опередили время на полвека, как закон и таблица, созданные без знания устройства атомов, их электронной структуры и понимания того, как это все влияет на химические свойства.
Тем не менее, Менделеев ошибался и не всегда легко признавал ошибки. Одна из сильнейших его ошибок - это приверженность его теории мирового эфира, в котором распространяется, например, свет. Физика конца XIX века отвергла эфир, а теория относительности окончательно похоронила его концепт. Однако в том же году, в котором Эйнштейн создает свою ОТО, Менделеев снова пытается обосновать существование мирового эфира - уже опираясь на химию. И публикует вот эту работу. Кстати, наш экземпляр - из личной библиотеки основателя ИОНХ РАН, академика Николая Курнакова.
Что ж, ошибки только подчеркивают величие ученого. А не ошибается лишь тот, кто ничего не делает.
https://chem-museum.ru/biblioteka/mirovoj-efir-i-dmitrij-mendeleev/
#библиотека
Материал подготовлен ИОНХ РАН для проекта «Виртуальный музей химии: продолжение осмотра» при грантовой поддержке Минобрнауки России в рамках федерального проекта «Популяризация науки и технологий». Проект выполняется в рамках Десятилетия науки и технологий.
Продолжаем рассказывать вам о пополнениях нашей цифровой библиотеки.
Сегодня на нашей цифровой полке - книга, которая показывает, что и гений может ошибаться и упорствовать в своих заблуждениях.
За Дмитрием Ивановичем Менделеевым числится множество открытий, технических проектов, изобретений (ну, кроме водки в 40 градусов - это точно не он). Многие из них - гениальны и опередили время на полвека, как закон и таблица, созданные без знания устройства атомов, их электронной структуры и понимания того, как это все влияет на химические свойства.
Тем не менее, Менделеев ошибался и не всегда легко признавал ошибки. Одна из сильнейших его ошибок - это приверженность его теории мирового эфира, в котором распространяется, например, свет. Физика конца XIX века отвергла эфир, а теория относительности окончательно похоронила его концепт. Однако в том же году, в котором Эйнштейн создает свою ОТО, Менделеев снова пытается обосновать существование мирового эфира - уже опираясь на химию. И публикует вот эту работу. Кстати, наш экземпляр - из личной библиотеки основателя ИОНХ РАН, академика Николая Курнакова.
Что ж, ошибки только подчеркивают величие ученого. А не ошибается лишь тот, кто ничего не делает.
https://chem-museum.ru/biblioteka/mirovoj-efir-i-dmitrij-mendeleev/
#библиотека
Материал подготовлен ИОНХ РАН для проекта «Виртуальный музей химии: продолжение осмотра» при грантовой поддержке Минобрнауки России в рамках федерального проекта «Популяризация науки и технологий». Проект выполняется в рамках Десятилетия науки и технологий.
👍3❤2
Биосенсор из спирулины поможет отслеживать состояние пациентов с астмой и сердечными заболеваниями
Ученые разработали модель медицинского сенсора для анализа дыхания на основе цианобактерий Arthrospira platensis, известных как спирулина. Образцы биосенсоров проявляли разные свойства в зависимости от материала, на который наносили раствор из бактериальных клеток. Так, устройство на кремниевой подложке реагировало на содержание в выдохе паров воды, перекиси водорода, уксуса и спирта, а образец на основе углеродных волокон обладал чувствительностью к нажатию на него и к вибрации поверхности, на которой располагался. Это позволит создать из экологичного сырья простые и многофункциональные портативные датчики для спортсменов, а также для пациентов с астмой и сердечными заболеваниями с целью диагностики и мониторинга их состояния. Результаты исследования, поддержанного грантами Российского научного фонда (РНФ), опубликованы в Microchemical Journal.
https://mendeleev.info/biosensor-iz-spiruliny-pomozhet-otslezhivat-sostoyanie-patsientov-s-astmoj-i-serdechnymi-zabolevaniyami/
Ученые разработали модель медицинского сенсора для анализа дыхания на основе цианобактерий Arthrospira platensis, известных как спирулина. Образцы биосенсоров проявляли разные свойства в зависимости от материала, на который наносили раствор из бактериальных клеток. Так, устройство на кремниевой подложке реагировало на содержание в выдохе паров воды, перекиси водорода, уксуса и спирта, а образец на основе углеродных волокон обладал чувствительностью к нажатию на него и к вибрации поверхности, на которой располагался. Это позволит создать из экологичного сырья простые и многофункциональные портативные датчики для спортсменов, а также для пациентов с астмой и сердечными заболеваниями с целью диагностики и мониторинга их состояния. Результаты исследования, поддержанного грантами Российского научного фонда (РНФ), опубликованы в Microchemical Journal.
https://mendeleev.info/biosensor-iz-spiruliny-pomozhet-otslezhivat-sostoyanie-patsientov-s-astmoj-i-serdechnymi-zabolevaniyami/
Mendeleev.info
Биосенсор из спирулины поможет отслеживать состояние пациентов с астмой и сердечными заболеваниями - Mendeleev.info
Ученые разработали модель медицинского сенсора для анализа дыхания на основе цианобактерий Arthrospira platensis, известных как спирулина. Образцы биосенсоров проявляли разные свойства в зависимости от материала, на который наносили раствор из бактериальных…