🌸Распутываем клубок нейросетей: подарок от Anthropic🌸
Прекрасная новость — опенсорс от Anthropic!
Авторы работ по интерпретируемости LLM выложили в опенсорс инструменты, чтобы работать со всеми открытыми весами и отслеживать "мыслительный процесс" вовремя генерации.
Теперь сообщество может применять метод для всех открытых систем.
Подход заключается в создании графов атрибуции, которые показывают, какие внутренние шаги предприняла модель для принятия конкретного решения. Библиотека позволяет
🟣 найти "логическую цепочку" принятия решения. То есть показывает, какие части модели влияют друг на друга и на итоговый ответ. Например, как конкретное слово, фраза или кусочек кода на входе влияет на результат через внутренние признаки модели.
🟣 нарисовать наглядную схему (граф) этой цепочки. Её можно смотреть, исследовать и подписывать важные элементы.
🟣 вмешиваться в работу модели. Вы можете вручную изменить внутренние признаки модели и посмотреть, как это повлияет на её ответ.
🟣 менять данные, переучивать модель и сравнивать результаты — улучшать стабильность, фактологичность, непредвзятость ответов.
🌸К чему это можно применить?
К очень многому:
— к лучшему отслеживанию логики модели в цепочке рассуждений и ризонинге
— контролю inference time training, улучшенному планированию и дообучению моделей, в том числе и для агентов
— повышению безопасности работы моделей с джейлбрейками и опасными примерами
— логике работы LLM с разными языками, логикой машинного перевода и мультиязычного ризонинга
— повышению качества в сложных out of domain областях: медицине, юриспруденции, поэзии.
Можно посмотреть, как это работает, на примере Gemma-2-2b и Llama-3.2-1b
Ноутбук
Лицензия на все — MIT!
🟣 Веб-интерфейс
🟣 Блогпост
🟣 Github
🟣 Статья про интерпретируемость - On the Biology of a Large Language Model
Прекрасная новость — опенсорс от Anthropic!
Авторы работ по интерпретируемости LLM выложили в опенсорс инструменты, чтобы работать со всеми открытыми весами и отслеживать "мыслительный процесс" вовремя генерации.
Теперь сообщество может применять метод для всех открытых систем.
Подход заключается в создании графов атрибуции, которые показывают, какие внутренние шаги предприняла модель для принятия конкретного решения. Библиотека позволяет
🌸К чему это можно применить?
К очень многому:
— к лучшему отслеживанию логики модели в цепочке рассуждений и ризонинге
— контролю inference time training, улучшенному планированию и дообучению моделей, в том числе и для агентов
— повышению безопасности работы моделей с джейлбрейками и опасными примерами
— логике работы LLM с разными языками, логикой машинного перевода и мультиязычного ризонинга
— повышению качества в сложных out of domain областях: медицине, юриспруденции, поэзии.
Можно посмотреть, как это работает, на примере Gemma-2-2b и Llama-3.2-1b
Ноутбук
Лицензия на все — MIT!
Please open Telegram to view this post
VIEW IN TELEGRAM
🌸Стрим на Рабкоре, 20.00 мск🌸
Давно не было стримов! Возвращаемся, да ещё как — сегодня стрим с Алексеем Сафроновым (Простые числа), будем обсуждать
– Как человечеству эффективно делать долгосрочные инвестиции?
– Новые возможности для аккумуляции информации и расчета плана;
– Можно ли цифровой плановой экономике почерпнуть что-то полезное из американского корпоративного управления – и наоборот?
– Роль государства в аккумуляции информации и управление планом.
🟣 YouTube, начнем в 20.00 по мск: https://youtube.com/live/YviV4TLqghI?feature=share
Приходите!
Как обычно, можно будет задать вопросы
Давно не было стримов! Возвращаемся, да ещё как — сегодня стрим с Алексеем Сафроновым (Простые числа), будем обсуждать
– Как человечеству эффективно делать долгосрочные инвестиции?
– Новые возможности для аккумуляции информации и расчета плана;
– Можно ли цифровой плановой экономике почерпнуть что-то полезное из американского корпоративного управления – и наоборот?
– Роль государства в аккумуляции информации и управление планом.
Приходите!
Как обычно, можно будет задать вопросы
Please open Telegram to view this post
VIEW IN TELEGRAM
YouTube
Плановая экономика в цифре / Кали Новская, Алексей Сафронов
Сегодня на стриме гость Рабкора экономист Алексей Сафронов и ведущая Кали Новская обсудят:
– Как человечеству эффективно делать долгосрочные инвестиции?
– Новые возможности для аккумуляции информации и расчета плана;
– Можно ли цифровой плановой экономике…
– Как человечеству эффективно делать долгосрочные инвестиции?
– Новые возможности для аккумуляции информации и расчета плана;
– Можно ли цифровой плановой экономике…
Kali Novskaya
🌸Стрим на Рабкоре, 20.00 мск🌸 Давно не было стримов! Возвращаемся, да ещё как — сегодня стрим с Алексеем Сафроновым (Простые числа), будем обсуждать – Как человечеству эффективно делать долгосрочные инвестиции? – Новые возможности для аккумуляции информации…
Через полчаса начинаем, приходите!
Вопросы можно задать на Ютубе, и в комментариях к этому посту
Вопросы можно задать на Ютубе, и в комментариях к этому посту
🌸Большая Книга ИИ теперь на Вики🌸
#nlp #про_nlp
На днях Сергей Марков выложил свою книгу "Охота на электроовец: Большая Книга Искусственного Интеллекта" в формате Вики.
Теперь каждую главу можно прочитать (и даже прокомментировать) отдельно, что очень удобно для 1200+ страничного двухтомника.
Это самая полная история всего, что происходило, включая весь 20 век и сильно раньше, а так же всеми любимый генИИ и его предпосылки.
🟣 Заглавная страница
🟣 Оглавление
Двухтомник можно скачать в pdf, epub и других форматах:
https://markoff.science/
#nlp #про_nlp
На днях Сергей Марков выложил свою книгу "Охота на электроовец: Большая Книга Искусственного Интеллекта" в формате Вики.
Теперь каждую главу можно прочитать (и даже прокомментировать) отдельно, что очень удобно для 1200+ страничного двухтомника.
Это самая полная история всего, что происходило, включая весь 20 век и сильно раньше, а так же всеми любимый генИИ и его предпосылки.
Двухтомник можно скачать в pdf, epub и других форматах:
https://markoff.science/
Please open Telegram to view this post
VIEW IN TELEGRAM
Telegram
Сергей Марков: машинное обучение, искусство и шитпостинг
Выложили «Охоту на электроовец» в виде wiki с возможностью комментировать — читайте, комментируйте, отправляйте всем, кому это может быть интересно
🌸Лучшая лекция ICLR 2025 🌸
#nlp #про_nlp #nlp_papers
Одной из главных лекций на ICLR в этом году можно смело назвать доклад Тима Роктешела (Tim Rocktaeschel, DeepMind) — Open Endedness, World Models, and the Automation of Innovation. Доклад наконец выложили на ютуб (мне даже не пришлось ее пиратить для вас)
Это очень хороший и своевременный обзорный доклад про новые приоритеты в исследовании ИИ: reinforcement learning, фундаментальные модели, проблемы бенчмарков, агентов и акселерации науки.
🟣 Abstract
Погоня за AGI требует перехода от узконаправленной оптимизации целей к принятию концепции Открытой Эволюции (Open-Endedness) — исследовательской парадигмы, внедрённой в области ИИ Стэнли, Леманом и Клуном. Она фокусируется на системах, способных бесконечно генерировать последовательности новых, но обучаемых артефактов. В этом докладе я представлю нашу работу по созданию крупномасштабных фундаментальных моделей мира (foundation world models), которые способны генерировать разнообразные и многогранные среды. Эти среды, в свою очередь, могут использоваться для обучения более универсальных и устойчивых агентов. Кроме того, я утверждаю, что связь между Открытой Эволюцией и Фундаментальными Моделями указывает на возможность автоматизации самого процесса инноваций. Это слияние уже даёт практические результаты: оно позволяет открывать способности моделей к самоулучшению (self-improvement), автоматизировать prompt engineering и red-teaming, и проведение дискуссий между ИИ-моделями. Всё это предвосхищает будущее, в котором ИИ будет сам двигать свои открытия вперёд.
🟣 Лекция со слайдами тут:
https://www.youtube.com/watch?v=ZZC_xqRgcHo&ab_channel=MatijaGrcic
🟣 Некоторые упомянутые статьи:
Prompt Breeder
Rainbow teaming
MLE bench
Awesome Open-endedness
METR и поиск экспоненты
Sakana AI AI Scientist
#nlp #про_nlp #nlp_papers
Одной из главных лекций на ICLR в этом году можно смело назвать доклад Тима Роктешела (Tim Rocktaeschel, DeepMind) — Open Endedness, World Models, and the Automation of Innovation. Доклад наконец выложили на ютуб
Это очень хороший и своевременный обзорный доклад про новые приоритеты в исследовании ИИ: reinforcement learning, фундаментальные модели, проблемы бенчмарков, агентов и акселерации науки.
Погоня за AGI требует перехода от узконаправленной оптимизации целей к принятию концепции Открытой Эволюции (Open-Endedness) — исследовательской парадигмы, внедрённой в области ИИ Стэнли, Леманом и Клуном. Она фокусируется на системах, способных бесконечно генерировать последовательности новых, но обучаемых артефактов. В этом докладе я представлю нашу работу по созданию крупномасштабных фундаментальных моделей мира (foundation world models), которые способны генерировать разнообразные и многогранные среды. Эти среды, в свою очередь, могут использоваться для обучения более универсальных и устойчивых агентов. Кроме того, я утверждаю, что связь между Открытой Эволюцией и Фундаментальными Моделями указывает на возможность автоматизации самого процесса инноваций. Это слияние уже даёт практические результаты: оно позволяет открывать способности моделей к самоулучшению (self-improvement), автоматизировать prompt engineering и red-teaming, и проведение дискуссий между ИИ-моделями. Всё это предвосхищает будущее, в котором ИИ будет сам двигать свои открытия вперёд.
https://www.youtube.com/watch?v=ZZC_xqRgcHo&ab_channel=MatijaGrcic
Prompt Breeder
Rainbow teaming
MLE bench
Awesome Open-endedness
METR и поиск экспоненты
Sakana AI AI Scientist
Please open Telegram to view this post
VIEW IN TELEGRAM
YouTube
Tim Rocktaeschel - Open Endedness, World Models, and the Automation of Innovation (with slides)
ICLR 2025
The pursuit of Artificial Superintelligence (ASI) requires a shift from narrow objective optimization towards embracing Open-Endedness—a research paradigm, pioneered in AI by Stanley, Lehman and Clune, that is focused on systems that generate endless…
The pursuit of Artificial Superintelligence (ASI) requires a shift from narrow objective optimization towards embracing Open-Endedness—a research paradigm, pioneered in AI by Stanley, Lehman and Clune, that is focused on systems that generate endless…
🌸Ловушка Chain-of-thought 🌸
#nlp #про_nlp #nlp_papers
На днях коллегиат из Apple выпустил статью с говорящим названием: "The Illusion of Thinking: Understanding the Strengths and Limitations of Reasoning Models via the Lens of Problem Complexity".
Поскольку из названия можно сразу сделать далеко идущий вывод, скажу сразу, что статья гораздо менее кликбейтная, и заслуживает внимания.
Краткий вывод: Reasoning LLM скорее эксплуатируют паттерны, чем реально демонстрируют способности к логике, особенно если их поместить в среду с задачами, где язык совсем не нужен.
🌸Суть экспериментов
Авторы специально создают набор задач, где язык как таковой не нужен, а нужны логические операции и ограниченный состав предикатов. Авторы берут задачки навроде Ханойской башни, Волка-козла-капусты и тд, и искусственно контролируют их сложность, увеличивая количество элементов.
По результатам авторы выделяют 3 группы задач: 1) задачи низкой сложности, где обычные инструкт-модели показывают такой же или лучший результат, чем ризонинг-модели 2) задачи средней сложности, где у ризонинга выходит преимущество 3) задачи высокой сложности, где у всех LLM результат падает в ноль.
Итог: при фиксированном бюджете на вывод (60 тыс токенов), у инструкционных и ризонинг моделей разные траектории. На простых и средних задачах ризонинг модели явно лидируют, но на задачах повышенной сложности результат не воспроизводится и качество у всех падает в ноль.
Тестируются o3-mini, DeepSeek-R1, Claude-3.7-Sonnet-Thinking — на всех результаты схожие.
🌸Chain-of-thought и не должен работать
Почему вообще Chain-of-thought должен лучше работать?
Chain of thought изначально очень ограниченный инструмент. Эксплуатация промпт-инжиниринга, которая опирается на совершенно искусственные данные. В веб-корпусе со всего интернета таких примеров будет совсем мало, и источника данных, по которым можно было бы проверить естественное распределение явлений в логах хода мыслей человека у нас нет. Датасеты, на которых ризонинг-модели учатся, достаточно искусственные и не то чтобы разнообразные. Да, на некоторых задачах потратить больше времени на генерацию помогает. Но есть и другие методы — разный декодинг, многошаговая генерация и т.д. Поэтому не стоит думать, что ризнинг-модели прямо хорошо думают, и что это из коробки масштабируется.
Одним из самых известных (и уже сатурированных) бенчмарков, который проверяет по сути это же — способность моделей демонстировать интеллект без языка — является ARC AGI. Он тоже построен на масштабируемых паттернах, и в ноябре 2024 его уже зарешали. Несколько аналогичных работ (вот и вот) проводило такие же тесты на способнсти LLM к планированию — и для ризонинг-моделей, и для инструкционных.
🌸Мечта о символьном ИИ
Требовать от вероятностной модели хорошо работать в условиях, где нужны строгие правила, вообще странновато, на мой взгляд. Но можно, если мы признаем, что логика предикатов и другие правиловые системы являются подмножеством в вероятностном пространстве языка.😈
Гипотеза, вообще говоря, имеет право на существование: попытки соединить фундаментальные модели и символьные методы уже были, например, есть трансформеры логики предикатов и даже на алголе. Ждем, когда это все протечет в тюнинг ризонинг-моделей!
🌸А что делать?
Может быть, комбинация с символьными методами и правда принесет нам что-то полезное.
Но пока до этого ещё далеко, можно было бы сделать как минимум три вещи:
— получше разобраться с механистической интерпретацией в применении к таким задачам, посмотреть, что вообще происходит с цепочками активаций и можно ли это улучшить тюнингом на данных;
— попробовать перетюнить модели с разными методиками inference time training — и сравнить результаты;
— попробовать разные методы декодинга, чтобы проверить, что результат сохраняется, либо существующий декодинг просто не оптимален для подобных задач.
Все эти гипотезы по сути заблокированы, так как веса у моделей закрытые, но как минимум можно было бы взять DeepSeek.
В общем, экспоненту найти в очередной раз не получилось, разве что отрицательный рост.
🟣 Статья
#nlp #про_nlp #nlp_papers
На днях коллегиат из Apple выпустил статью с говорящим названием: "The Illusion of Thinking: Understanding the Strengths and Limitations of Reasoning Models via the Lens of Problem Complexity".
Поскольку из названия можно сразу сделать далеко идущий вывод, скажу сразу, что статья гораздо менее кликбейтная, и заслуживает внимания.
Краткий вывод: Reasoning LLM скорее эксплуатируют паттерны, чем реально демонстрируют способности к логике, особенно если их поместить в среду с задачами, где язык совсем не нужен.
🌸Суть экспериментов
Авторы специально создают набор задач, где язык как таковой не нужен, а нужны логические операции и ограниченный состав предикатов. Авторы берут задачки навроде Ханойской башни, Волка-козла-капусты и тд, и искусственно контролируют их сложность, увеличивая количество элементов.
По результатам авторы выделяют 3 группы задач: 1) задачи низкой сложности, где обычные инструкт-модели показывают такой же или лучший результат, чем ризонинг-модели 2) задачи средней сложности, где у ризонинга выходит преимущество 3) задачи высокой сложности, где у всех LLM результат падает в ноль.
Итог: при фиксированном бюджете на вывод (60 тыс токенов), у инструкционных и ризонинг моделей разные траектории. На простых и средних задачах ризонинг модели явно лидируют, но на задачах повышенной сложности результат не воспроизводится и качество у всех падает в ноль.
Тестируются o3-mini, DeepSeek-R1, Claude-3.7-Sonnet-Thinking — на всех результаты схожие.
🌸Chain-of-thought и не должен работать
Почему вообще Chain-of-thought должен лучше работать?
Chain of thought изначально очень ограниченный инструмент. Эксплуатация промпт-инжиниринга, которая опирается на совершенно искусственные данные. В веб-корпусе со всего интернета таких примеров будет совсем мало, и источника данных, по которым можно было бы проверить естественное распределение явлений в логах хода мыслей человека у нас нет. Датасеты, на которых ризонинг-модели учатся, достаточно искусственные и не то чтобы разнообразные. Да, на некоторых задачах потратить больше времени на генерацию помогает. Но есть и другие методы — разный декодинг, многошаговая генерация и т.д. Поэтому не стоит думать, что ризнинг-модели прямо хорошо думают, и что это из коробки масштабируется.
Одним из самых известных (и уже сатурированных) бенчмарков, который проверяет по сути это же — способность моделей демонстировать интеллект без языка — является ARC AGI. Он тоже построен на масштабируемых паттернах, и в ноябре 2024 его уже зарешали. Несколько аналогичных работ (вот и вот) проводило такие же тесты на способнсти LLM к планированию — и для ризонинг-моделей, и для инструкционных.
🌸Мечта о символьном ИИ
Требовать от вероятностной модели хорошо работать в условиях, где нужны строгие правила, вообще странновато, на мой взгляд. Но можно, если мы признаем, что логика предикатов и другие правиловые системы являются подмножеством в вероятностном пространстве языка.
Гипотеза, вообще говоря, имеет право на существование: попытки соединить фундаментальные модели и символьные методы уже были, например, есть трансформеры логики предикатов и даже на алголе. Ждем, когда это все протечет в тюнинг ризонинг-моделей!
🌸А что делать?
Может быть, комбинация с символьными методами и правда принесет нам что-то полезное.
Но пока до этого ещё далеко, можно было бы сделать как минимум три вещи:
— получше разобраться с механистической интерпретацией в применении к таким задачам, посмотреть, что вообще происходит с цепочками активаций и можно ли это улучшить тюнингом на данных;
— попробовать перетюнить модели с разными методиками inference time training — и сравнить результаты;
— попробовать разные методы декодинга, чтобы проверить, что результат сохраняется, либо существующий декодинг просто не оптимален для подобных задач.
Все эти гипотезы по сути заблокированы, так как веса у моделей закрытые, но как минимум можно было бы взять DeepSeek.
В общем, экспоненту найти в очередной раз не получилось, разве что отрицательный рост.
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM