Telegram Group & Telegram Channel
What Matters for Model Merging at Scale?
Статья: https://arxiv.org/abs/2410.03617

Статья про слияние моделей. Основные пять выводов написаны сразу в абстракте:
1. Учить экспертов надо поверх инстрактов, а не базовых моделей.
2. Чем больше модель, тем лучше работает слияние.
3. Если учить на N разных задач и сливать, то генерализация (= качество на отложенных задачах) лучше, чем если учить одну модель на общем наборе данных.
4. Чем больше модель, тем больше разных экспертов можно вливать.
5. Чем больше моделей и экспертов, тем больше пофиг на выбор конкретного метод слияния.

Что вообще за слияние? Самый простой вариант — усреднение весов. То есть мы берём две разных модели (желательно от одного предка), считаем какую-то функцию от их весов, и получаем одну модель той же архитектуры. Конкретных функций бывает много, кроме усреднения см. Task Arithmetic, TIES, DARE.

Все эксперименты проводятся на разных вариантах PaLM-2, гугловой проприетарной модели. Всего есть N задач, для каждой из них делается отдельный тюн. Задачи берут из T0. Их делят на две категории: held-in и held-out. Тюнят модели на held-in, полностью, без Лоры.

Результаты 1 и 4 как по мне довольно очевидны, поэтому сосредоточимся на 2, 3 и 5. Третий результат особенно интересен, потому что он очень сильный: можно просто обучить 8 моделей на разные задачи, и итоговая модель не только будет хороша в этих задачах, но и станет в целом лучше (= качество на отложенных задачах станет выше) 😱

Бейзлайн: версии модели, обученные сразу на всех задачах. 24B модель, смёрженная из 8 экспертов, работает на уровне бейзлайна, 64B модель — значимо его превосходит. При обучении поверх базовой модели (вместо инстракта) ситуация не такая радужная, но всё равно неплохая. Второй результат про то же, но на held-in задачах. Там для 8 экспертов у 64B итоговое качество около 90% от бейзлайна, и чем меньше модель — тем хуже.

Что же касается последнего результата, он просто очень приятный. Для больших моделей вообще не очень важно, как именно сливать, получается одно и то же с точки зрения качества ☺️

Самое крутое в слиянии — возможность переиспользовать кучи GPU часов других людей. Мне в статье не хватило разве что исследований того, насколько хорошо сливаются модели разных форматов промптов. В остальном — это очень хороший повод всё это активнее применять.
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/senior_augur/321
Create:
Last Update:

What Matters for Model Merging at Scale?
Статья: https://arxiv.org/abs/2410.03617

Статья про слияние моделей. Основные пять выводов написаны сразу в абстракте:
1. Учить экспертов надо поверх инстрактов, а не базовых моделей.
2. Чем больше модель, тем лучше работает слияние.
3. Если учить на N разных задач и сливать, то генерализация (= качество на отложенных задачах) лучше, чем если учить одну модель на общем наборе данных.
4. Чем больше модель, тем больше разных экспертов можно вливать.
5. Чем больше моделей и экспертов, тем больше пофиг на выбор конкретного метод слияния.

Что вообще за слияние? Самый простой вариант — усреднение весов. То есть мы берём две разных модели (желательно от одного предка), считаем какую-то функцию от их весов, и получаем одну модель той же архитектуры. Конкретных функций бывает много, кроме усреднения см. Task Arithmetic, TIES, DARE.

Все эксперименты проводятся на разных вариантах PaLM-2, гугловой проприетарной модели. Всего есть N задач, для каждой из них делается отдельный тюн. Задачи берут из T0. Их делят на две категории: held-in и held-out. Тюнят модели на held-in, полностью, без Лоры.

Результаты 1 и 4 как по мне довольно очевидны, поэтому сосредоточимся на 2, 3 и 5. Третий результат особенно интересен, потому что он очень сильный: можно просто обучить 8 моделей на разные задачи, и итоговая модель не только будет хороша в этих задачах, но и станет в целом лучше (= качество на отложенных задачах станет выше) 😱

Бейзлайн: версии модели, обученные сразу на всех задачах. 24B модель, смёрженная из 8 экспертов, работает на уровне бейзлайна, 64B модель — значимо его превосходит. При обучении поверх базовой модели (вместо инстракта) ситуация не такая радужная, но всё равно неплохая. Второй результат про то же, но на held-in задачах. Там для 8 экспертов у 64B итоговое качество около 90% от бейзлайна, и чем меньше модель — тем хуже.

Что же касается последнего результата, он просто очень приятный. Для больших моделей вообще не очень важно, как именно сливать, получается одно и то же с точки зрения качества ☺️

Самое крутое в слиянии — возможность переиспользовать кучи GPU часов других людей. Мне в статье не хватило разве что исследований того, насколько хорошо сливаются модели разных форматов промптов. В остальном — это очень хороший повод всё это активнее применять.

BY Старший Авгур


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/senior_augur/321

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Telegram does offer end-to-end encrypted communications through Secret Chats, but this is not the default setting. Standard conversations use the MTProto method, enabling server-client encryption but with them stored on the server for ease-of-access. This makes using Telegram across multiple devices simple, but also means that the regular Telegram chats you’re having with folks are not as secure as you may believe. In 2018, Russia banned Telegram although it reversed the prohibition two years later. 'Wild West' Ukrainian forces have since put up a strong resistance to the Russian troops amid the war that has left hundreds of Ukrainian civilians, including children, dead, according to the United Nations. Ukrainian and international officials have accused Russia of targeting civilian populations with shelling and bombardments. In a message on his Telegram channel recently recounting the episode, Durov wrote: "I lost my company and my home, but would do it again – without hesitation."
from in


Telegram Старший Авгур
FROM American