Telegram Group & Telegram Channel
О размере эффекта и расчете объема выборки в научных задачах

Я в последнее время активно читаю теорию A/B-тестирования. По сути это классические эксперименты с контрольной и тестовой группами (case/control), с которыми постоянно сталкиваются ученые, но с учетом особенностей бизнеса.

📊 Важным этапом при проведении A/B-тестирования является расчет MDE (minimum detectable effect), минимально обнаруживаемый эффект. Например, в эксперименте мы хотим зафиксировать увеличение конверсии на 2% и мы можем рассчитать необходимый размер выборки для тестовой и контрольной группы, исходя из этого. Для этого нам нужно знать минимально обнаруживаемый размер эффекта (определили выше), дисперсию в контрольной и тестовой группе, а также уровень ошибки первого рода (стандартно 0.05) и желаемую мощность теста (обычно 80%).

На всякий случай напомню: мощность - это вероятность найти статистически значимые различия там, где они действительно есть (то есть единица минус вероятность ошибки II рода, про ошибки мнемоническое правило в прикрепленной картинке)

Меня заинтриговал этот подход, потому что он отталкивается от практических соображений.
🌱Интересно было бы применить такой концепт в биологических исследованиях. Например, сначала определить, какой эффект был бы биологически значимым, и после этого рассчитывать необходимый размер выборки. К примеру, мы изучаем влияние фитогормона на рост корня и знаем по предыдущим экспериментам длину корня растений определенного возраста (также можем рассчитать дисперсию). Можно зафиксировать, что для нас биологически важным будет изменение длины корня на 10%. После этого по формуле MDE, мы можем рассчитать необходимый размер выборки, чтобы зафиксировать такой эффект.
🐀 Хорошо, если полученный размер выборки окажется допустимым для исследования, так как при работе с мышами или другими животными, есть риск, что необходимый статистически размер выборки не одобрит биоэтический комитет.
Но тут есть такая особенность, что чем больше эффект, тем меньше нужна выборка, чтобы его обнаружить. Можно для себя решить, что совсем небольшие изменения не несут особой биологической ценности и рассчитывать выборку для бОльших эффектов.

Как вы думаете, возможен ли такой подход в научных исследованиях?

#product #analytics



group-telegram.com/stats_for_science/111
Create:
Last Update:

О размере эффекта и расчете объема выборки в научных задачах

Я в последнее время активно читаю теорию A/B-тестирования. По сути это классические эксперименты с контрольной и тестовой группами (case/control), с которыми постоянно сталкиваются ученые, но с учетом особенностей бизнеса.

📊 Важным этапом при проведении A/B-тестирования является расчет MDE (minimum detectable effect), минимально обнаруживаемый эффект. Например, в эксперименте мы хотим зафиксировать увеличение конверсии на 2% и мы можем рассчитать необходимый размер выборки для тестовой и контрольной группы, исходя из этого. Для этого нам нужно знать минимально обнаруживаемый размер эффекта (определили выше), дисперсию в контрольной и тестовой группе, а также уровень ошибки первого рода (стандартно 0.05) и желаемую мощность теста (обычно 80%).

На всякий случай напомню: мощность - это вероятность найти статистически значимые различия там, где они действительно есть (то есть единица минус вероятность ошибки II рода, про ошибки мнемоническое правило в прикрепленной картинке)

Меня заинтриговал этот подход, потому что он отталкивается от практических соображений.
🌱Интересно было бы применить такой концепт в биологических исследованиях. Например, сначала определить, какой эффект был бы биологически значимым, и после этого рассчитывать необходимый размер выборки. К примеру, мы изучаем влияние фитогормона на рост корня и знаем по предыдущим экспериментам длину корня растений определенного возраста (также можем рассчитать дисперсию). Можно зафиксировать, что для нас биологически важным будет изменение длины корня на 10%. После этого по формуле MDE, мы можем рассчитать необходимый размер выборки, чтобы зафиксировать такой эффект.
🐀 Хорошо, если полученный размер выборки окажется допустимым для исследования, так как при работе с мышами или другими животными, есть риск, что необходимый статистически размер выборки не одобрит биоэтический комитет.
Но тут есть такая особенность, что чем больше эффект, тем меньше нужна выборка, чтобы его обнаружить. Можно для себя решить, что совсем небольшие изменения не несут особой биологической ценности и рассчитывать выборку для бОльших эффектов.

Как вы думаете, возможен ли такой подход в научных исследованиях?

#product #analytics

BY Статистика и R в науке и аналитике




Share with your friend now:
group-telegram.com/stats_for_science/111

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Some people used the platform to organize ahead of the storming of the U.S. Capitol in January 2021, and last month Senator Mark Warner sent a letter to Durov urging him to curb Russian information operations on Telegram. Update March 8, 2022: EFF has clarified that Channels and Groups are not fully encrypted, end-to-end, updated our post to link to Telegram’s FAQ for Cloud and Secret chats, updated to clarify that auto-delete is available for group and channel admins, and added some additional links. In this regard, Sebi collaborated with the Telecom Regulatory Authority of India (TRAI) to reduce the vulnerability of the securities market to manipulation through misuse of mass communication medium like bulk SMS. Right now the digital security needs of Russians and Ukrainians are very different, and they lead to very different caveats about how to mitigate the risks associated with using Telegram. For Ukrainians in Ukraine, whose physical safety is at risk because they are in a war zone, digital security is probably not their highest priority. They may value access to news and communication with their loved ones over making sure that all of their communications are encrypted in such a manner that they are indecipherable to Telegram, its employees, or governments with court orders. If you initiate a Secret Chat, however, then these communications are end-to-end encrypted and are tied to the device you are using. That means it’s less convenient to access them across multiple platforms, but you are at far less risk of snooping. Back in the day, Secret Chats received some praise from the EFF, but the fact that its standard system isn’t as secure earned it some criticism. If you’re looking for something that is considered more reliable by privacy advocates, then Signal is the EFF’s preferred platform, although that too is not without some caveats.
from in


Telegram Статистика и R в науке и аналитике
FROM American