Telegram Group & Telegram Channel
Пусть p — большое простое число (хотя бы 5). В каком диапазоне известна p-компонента в стабильных гомотопических группах сфер?

Зафиксирую тут, что нагуглил. Удобно обозначить q:=2p-2.

-1. Методом убивающих пространств легко показать, что в размерностях <2q есть только одна копия Z/p, которая сидит в q-ой группе. То есть легко досчитать примерно до ~4p. При p=5 получается 15.

0. Hirosi Toda в серии статей "p-primary components of homotopy groups" (1958-1959) досчитал до p^2q-4, то есть примерно до 2p^3. При p=5 получается 196. Видимо, он комбинировал метод убивающих пространств с EHP-последовательностями, композициями, скобками Тоды. В книжке "Композиционные методы..." почему-то сформулирован результат только до размерности pq-2 ~ 2p^2; не знаю, почему.

1. Методами Тоды много считал Shichiro Oka. В серии статей The Stable Homotopy Groups of Spheres (1971-1975) этим методом он посчитал компоненты до размерности (2p^2+p-2)q-6, то есть примерно до 4p^3. При p=5 получается 416.

2. Комбинируя с вычислениями Накамуры* второго листа в с.п. Адамса, Ока смог продвинуться ещё на 4p размерностей и добраться до (2p^2+p)q-4. При p=5 получается 436.

3. Используя те же вычисления Накамуры, но для с.п. Адамса-Новикова (и спектра Брауна-Петерсона, следуя Миллеру и Нейзендорферу), Marc Aubry посчитал компоненты до размерности
(3p^2+4p)q-1, то есть примерно до 6p^3. При p=5 получается 759.
(статья "Calculs de groupes d'homotopie stables de la sphere, par la suite spectrale d'Adams-Novikov", 1984. Это диссертация под руководством Лемэра.)

4. В книжке Douglas Ravenel "Complex cobordism and stable homotopy groups of spheres" (1986) предлагается некий "метод бесконечного спуска" (использующий, помимо с.п. А.-Н., всякие накопленные знания про BP, хроматическую теорию, введённые Равенелем спектры T(m)...).
Равенел не говорит, насколько далеко удаётся продвинуться для любого p, но при p=5 проводит показательные вычисления и добирается до 999.

5. Наконец, в тексте Hirofumi Nakai, Douglas Ravenel "The method of infinite descent in stable homotopy theory II" высказана надежда, что примерно теми же методами можно добраться примерно до p^4q ~ 2p^5. Этот текст появился как препринт в 2008, выложен на архив в 2018, опубликован в 2024 в New York Journal of Mathematics. При публикации в нём появился абзац:

It is unlikely that either author will take up this computational project any time soon. The purpose of the present paper is to document what we believe to be the most promising method of extending the computation of [Rav04, Chapter 7] in hopes that some more energetic mathematicians will use it in the future.

*Osamu Nakamura, On the cohomology of the mod p Steenrod algebra (1975)

P.S. Конечно, в описанных размерностях известны не только группы, но и композиционные умножения между ними; у Aubry соответствующая алгебра даже задана образующими и соотношениями



group-telegram.com/sweet_homotopy/2040
Create:
Last Update:

Пусть p — большое простое число (хотя бы 5). В каком диапазоне известна p-компонента в стабильных гомотопических группах сфер?

Зафиксирую тут, что нагуглил. Удобно обозначить q:=2p-2.

-1. Методом убивающих пространств легко показать, что в размерностях <2q есть только одна копия Z/p, которая сидит в q-ой группе. То есть легко досчитать примерно до ~4p. При p=5 получается 15.

0. Hirosi Toda в серии статей "p-primary components of homotopy groups" (1958-1959) досчитал до p^2q-4, то есть примерно до 2p^3. При p=5 получается 196. Видимо, он комбинировал метод убивающих пространств с EHP-последовательностями, композициями, скобками Тоды. В книжке "Композиционные методы..." почему-то сформулирован результат только до размерности pq-2 ~ 2p^2; не знаю, почему.

1. Методами Тоды много считал Shichiro Oka. В серии статей The Stable Homotopy Groups of Spheres (1971-1975) этим методом он посчитал компоненты до размерности (2p^2+p-2)q-6, то есть примерно до 4p^3. При p=5 получается 416.

2. Комбинируя с вычислениями Накамуры* второго листа в с.п. Адамса, Ока смог продвинуться ещё на 4p размерностей и добраться до (2p^2+p)q-4. При p=5 получается 436.

3. Используя те же вычисления Накамуры, но для с.п. Адамса-Новикова (и спектра Брауна-Петерсона, следуя Миллеру и Нейзендорферу), Marc Aubry посчитал компоненты до размерности
(3p^2+4p)q-1, то есть примерно до 6p^3. При p=5 получается 759.
(статья "Calculs de groupes d'homotopie stables de la sphere, par la suite spectrale d'Adams-Novikov", 1984. Это диссертация под руководством Лемэра.)

4. В книжке Douglas Ravenel "Complex cobordism and stable homotopy groups of spheres" (1986) предлагается некий "метод бесконечного спуска" (использующий, помимо с.п. А.-Н., всякие накопленные знания про BP, хроматическую теорию, введённые Равенелем спектры T(m)...).
Равенел не говорит, насколько далеко удаётся продвинуться для любого p, но при p=5 проводит показательные вычисления и добирается до 999.

5. Наконец, в тексте Hirofumi Nakai, Douglas Ravenel "The method of infinite descent in stable homotopy theory II" высказана надежда, что примерно теми же методами можно добраться примерно до p^4q ~ 2p^5. Этот текст появился как препринт в 2008, выложен на архив в 2018, опубликован в 2024 в New York Journal of Mathematics. При публикации в нём появился абзац:

It is unlikely that either author will take up this computational project any time soon. The purpose of the present paper is to document what we believe to be the most promising method of extending the computation of [Rav04, Chapter 7] in hopes that some more energetic mathematicians will use it in the future.

*Osamu Nakamura, On the cohomology of the mod p Steenrod algebra (1975)

P.S. Конечно, в описанных размерностях известны не только группы, но и композиционные умножения между ними; у Aubry соответствующая алгебра даже задана образующими и соотношениями

BY сладко стянул


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/sweet_homotopy/2040

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Apparently upbeat developments in Russia's discussions with Ukraine helped at least temporarily send investors back into risk assets. Russian President Vladimir Putin said during a meeting with his Belarusian counterpart Alexander Lukashenko that there were "certain positive developments" occurring in the talks with Ukraine, according to a transcript of their meeting. Putin added that discussions were happening "almost on a daily basis." The account, "War on Fakes," was created on February 24, the same day Russian President Vladimir Putin announced a "special military operation" and troops began invading Ukraine. The page is rife with disinformation, according to The Atlantic Council's Digital Forensic Research Lab, which studies digital extremism and published a report examining the channel. Under the Sebi Act, the regulator has the power to carry out search and seizure of books, registers, documents including electronics and digital devices from any person associated with the securities market. Telegram has become more interventionist over time, and has steadily increased its efforts to shut down these accounts. But this has also meant that the company has also engaged with lawmakers more generally, although it maintains that it doesn’t do so willingly. For instance, in September 2021, Telegram reportedly blocked a chat bot in support of (Putin critic) Alexei Navalny during Russia’s most recent parliamentary elections. Pavel Durov was quoted at the time saying that the company was obliged to follow a “legitimate” law of the land. He added that as Apple and Google both follow the law, to violate it would give both platforms a reason to boot the messenger from its stores. Two days after Russia invaded Ukraine, an account on the Telegram messaging platform posing as President Volodymyr Zelenskiy urged his armed forces to surrender.
from in


Telegram сладко стянул
FROM American