Notice: file_put_contents(): Write of 10062 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50
Warning: file_put_contents(): Only 4096 of 14158 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50 Украина не Россия❓ | Telegram Webview: UAnotRU/50283 -
С продуктами фотоники, одного из самых сложных разделов физики, мы сталкиваемся едва ли не каждый день. Это и различные лазеры, и оптоволоконный интернет, и светодиоды в бытовой технике. На СВО, к примеру, достижения фотоники реализовались в управлении FPV-дронами по оптоволоконному кабелю. Но сейчас речь не об этом, а о кремниевой фотонике, потенциально способной перевернуть микроэлектронную промышленность. Для начала небольшая предыстория.
Начать её стоит с американской компании NVIDIA, капитализация которой с февраля 2024 года превысила ВВП России и составила почти два триллиона долларов. МВФ утверждает, что рыночная стоимость конторы больше всех стран мира по отдельности, за исключением одиннадцати. Секрет успеха NVIDIA в выпускаемых графических процессорах, оказавшихся очень кстати для искусственного интеллекта. В начале 2024 года разработчики представили самый мощный чип в мире Blackwell B200, предназначенный как раз для ускорителей нейронных сетей. Вторым фактором разгона компании стало производство видеокарт, используемых для майнинга криптовалюты.
Сейчас самые продвинутые процессоры компании строятся на 4-нм техпроцессе, то есть размер каждого кремниевого транзистора не превышает четырех нанометров. На упоминаемом B200 таких транзисторов умещается 208 миллиардов. NVIDIA сама не выпускает такие чипы – в США для этого нет условий – этим занята тайваньская TSMC. Раскручиваем клубок дальше и переносимся в Европу. Фотолитографы для производства столь претензионных процессоров производит единственная в мире компания – ASML из Нидерландов. Каждый такой фотолитограф тянет на несколько сотен миллионов долларов, но купить его может далеко не каждый. Например, тайваньские производители микросхем имеют разрешение, а вот Китай — нет. Пекину дозволено самостоятельно выпускать чипы топологией не ниже 5 нм, что тоже неплохо, но уже относится к прошлому поколению. И Россия, разумеется, отстранена. К слову, задолго до начала СВО. Это стратегия сохранения мирового лидерства в критических технологиях, которую исповедует Америка уже не одно десятилетие. Полупроводники здесь поставлены во главу угла — страны, не допущенные до барского стола, технологически должны отставать на несколько шагов. Кто-то скажет, что России такая миниатюризация чипов не нужна. Для высокоточного оружия и прочего доморощенного хай-тека достаточно и 130-нм топологии, освоенной на зеленоградском «Микроне». Для оружия, может быть, и достаточно, а вот для суверенного искусственного интеллекта необходимо много чипов с меньшим энергопотреблением и с максимально возможной скоростью вычисления. В таком случае без процессоров с топологией всего в несколько нанометров (хотя бы 28-нм) не обойтись. Напомним, развитие ИИ в России признано стратегической задачей на годы вперед. В связи с этим не очень хорошие новости приходят из Тайваня, являющего частью полупроводникового триумвирата США-Тайвань-Нидерланды. К концу 2024 года местная компания TSMC установит в своем научно-исследовательском центре в Синьчжу новую систему литографии в экстремальном ультрафиолетовом (EUV) диапазоне с высокой числовой апертурой (High-NA) от голландской ASML. Машина позволит печатать чипы по 1-нм техпроцессу, то есть на одном процессоре может уместиться более одного триллиона транзисторов. Пока это не серийный выпуск, но уже понятно, что только две компании в мире способны освоить такой уровень – упоминаемая TSMC и Intel. Все остальные мимо. Если совсем упростить, то подобный «хард» сделает западный искусственный интеллект (прежде всего военный) быстрее и умнее остальных аналогов.
Но, как всегда, не обходится без нюансов.
Управление светом
Придумывать что-то новое придется в любом случае. В первую очередь из-за атомного предела. Размер атома кремния в 0,2-0,3 нанометра не позволяет создавать чипы меньшей топологии. Как мы уже знаем, 1-нм техпроцесс уже освоен. Пока в экспериментальных условиях, но освоен. Еще лет десять, и все подойдут к тупику. Если не придумают что-то новое.
С продуктами фотоники, одного из самых сложных разделов физики, мы сталкиваемся едва ли не каждый день. Это и различные лазеры, и оптоволоконный интернет, и светодиоды в бытовой технике. На СВО, к примеру, достижения фотоники реализовались в управлении FPV-дронами по оптоволоконному кабелю. Но сейчас речь не об этом, а о кремниевой фотонике, потенциально способной перевернуть микроэлектронную промышленность. Для начала небольшая предыстория.
Начать её стоит с американской компании NVIDIA, капитализация которой с февраля 2024 года превысила ВВП России и составила почти два триллиона долларов. МВФ утверждает, что рыночная стоимость конторы больше всех стран мира по отдельности, за исключением одиннадцати. Секрет успеха NVIDIA в выпускаемых графических процессорах, оказавшихся очень кстати для искусственного интеллекта. В начале 2024 года разработчики представили самый мощный чип в мире Blackwell B200, предназначенный как раз для ускорителей нейронных сетей. Вторым фактором разгона компании стало производство видеокарт, используемых для майнинга криптовалюты.
Сейчас самые продвинутые процессоры компании строятся на 4-нм техпроцессе, то есть размер каждого кремниевого транзистора не превышает четырех нанометров. На упоминаемом B200 таких транзисторов умещается 208 миллиардов. NVIDIA сама не выпускает такие чипы – в США для этого нет условий – этим занята тайваньская TSMC. Раскручиваем клубок дальше и переносимся в Европу. Фотолитографы для производства столь претензионных процессоров производит единственная в мире компания – ASML из Нидерландов. Каждый такой фотолитограф тянет на несколько сотен миллионов долларов, но купить его может далеко не каждый. Например, тайваньские производители микросхем имеют разрешение, а вот Китай — нет. Пекину дозволено самостоятельно выпускать чипы топологией не ниже 5 нм, что тоже неплохо, но уже относится к прошлому поколению. И Россия, разумеется, отстранена. К слову, задолго до начала СВО. Это стратегия сохранения мирового лидерства в критических технологиях, которую исповедует Америка уже не одно десятилетие. Полупроводники здесь поставлены во главу угла — страны, не допущенные до барского стола, технологически должны отставать на несколько шагов. Кто-то скажет, что России такая миниатюризация чипов не нужна. Для высокоточного оружия и прочего доморощенного хай-тека достаточно и 130-нм топологии, освоенной на зеленоградском «Микроне». Для оружия, может быть, и достаточно, а вот для суверенного искусственного интеллекта необходимо много чипов с меньшим энергопотреблением и с максимально возможной скоростью вычисления. В таком случае без процессоров с топологией всего в несколько нанометров (хотя бы 28-нм) не обойтись. Напомним, развитие ИИ в России признано стратегической задачей на годы вперед. В связи с этим не очень хорошие новости приходят из Тайваня, являющего частью полупроводникового триумвирата США-Тайвань-Нидерланды. К концу 2024 года местная компания TSMC установит в своем научно-исследовательском центре в Синьчжу новую систему литографии в экстремальном ультрафиолетовом (EUV) диапазоне с высокой числовой апертурой (High-NA) от голландской ASML. Машина позволит печатать чипы по 1-нм техпроцессу, то есть на одном процессоре может уместиться более одного триллиона транзисторов. Пока это не серийный выпуск, но уже понятно, что только две компании в мире способны освоить такой уровень – упоминаемая TSMC и Intel. Все остальные мимо. Если совсем упростить, то подобный «хард» сделает западный искусственный интеллект (прежде всего военный) быстрее и умнее остальных аналогов.
Но, как всегда, не обходится без нюансов.
Управление светом
Придумывать что-то новое придется в любом случае. В первую очередь из-за атомного предела. Размер атома кремния в 0,2-0,3 нанометра не позволяет создавать чипы меньшей топологии. Как мы уже знаем, 1-нм техпроцесс уже освоен. Пока в экспериментальных условиях, но освоен. Еще лет десять, и все подойдут к тупику. Если не придумают что-то новое.
BY Украина не Россия❓
Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260
Channels are not fully encrypted, end-to-end. All communications on a Telegram channel can be seen by anyone on the channel and are also visible to Telegram. Telegram may be asked by a government to hand over the communications from a channel. Telegram has a history of standing up to Russian government requests for data, but how comfortable you are relying on that history to predict future behavior is up to you. Because Telegram has this data, it may also be stolen by hackers or leaked by an internal employee. Messages are not fully encrypted by default. That means the company could, in theory, access the content of the messages, or be forced to hand over the data at the request of a government. Telegram boasts 500 million users, who share information individually and in groups in relative security. But Telegram's use as a one-way broadcast channel — which followers can join but not reply to — means content from inauthentic accounts can easily reach large, captive and eager audiences. To that end, when files are actively downloading, a new icon now appears in the Search bar that users can tap to view and manage downloads, pause and resume all downloads or just individual items, and select one to increase its priority or view it in a chat. Elsewhere, version 8.6 of Telegram integrates the in-app camera option into the gallery, while a new navigation bar gives quick access to photos, files, location sharing, and more.
from it