Telegram Group & Telegram Channel
Forwarded from Nikita Trifonov
1е место public LB
Мое решение - стэкинг, где на первом уровне обычная модель, на втором уровне - модель, которая улучшает предсказания первой, эксплуатируя лик
Модель первого уровня - coverhunter (https://arxiv.org/pdf/2306.09025v1 , код модели из https://github.com/alanngnet/CoverHunterMPS с минорными твиками). Вместо лоссов из статьи использовал аркфейс с margin, зависящей от кол-ва примеров класса. Реализовал аугментации из статьи - XYMasking, сдвиг спектрограммы по вертикали, изменение скорости, изменение громкости. Модель первого уровня довел примерно до 0.608 public LB

Суть лика - айдишники в test_ids.npy не зашафлены, треки, которые являются каверами друг друга, идут непосредственно друг за другом. Это легко увидеть, если посчитать эмбеддинги моделью первого уровня для первой тысячи треков из test_ids.npy и построить матрицу попарных расстояний между ними (см. картинку). То есть взаимное расположение айдишников в test_ids.npy - важная фича, если треки следуют непосредственно друг за другом, они скорее всего являются кавером, а если между ними 2000 других айдишников - точно нет. Заэксплуатиривоть это можно разными способами, например CatBoostRanker на двух фичах - расстояние между эмбеддингами и расстояние между айдишниками - давал порядка 0.98 public LB. Я ожидал, что больше людей найдет лик, поэтому оверкиллил эту часть: обучал u-net, которому на вход подается матрица попарных расстояний, а выход трактуем как матрицу скоров (одна строка - один трек, для которого нужно найти каверы, а сами значения в строке - это скоры треков, находящихся слева и справа от данного в списке айдишников). Использовал лосс для задачи ранжирования из pytorchltr; реализовал маскирование, чтобы учитывать для каждого трека ровно по 100 соседей слева и справа из списка айдишников; аугментацию для трейна за счет шаффлинга порядка клик и порядка треков внутри клик.



group-telegram.com/abacabadabacaba404/68
Create:
Last Update:

1е место public LB
Мое решение - стэкинг, где на первом уровне обычная модель, на втором уровне - модель, которая улучшает предсказания первой, эксплуатируя лик
Модель первого уровня - coverhunter (https://arxiv.org/pdf/2306.09025v1 , код модели из https://github.com/alanngnet/CoverHunterMPS с минорными твиками). Вместо лоссов из статьи использовал аркфейс с margin, зависящей от кол-ва примеров класса. Реализовал аугментации из статьи - XYMasking, сдвиг спектрограммы по вертикали, изменение скорости, изменение громкости. Модель первого уровня довел примерно до 0.608 public LB

Суть лика - айдишники в test_ids.npy не зашафлены, треки, которые являются каверами друг друга, идут непосредственно друг за другом. Это легко увидеть, если посчитать эмбеддинги моделью первого уровня для первой тысячи треков из test_ids.npy и построить матрицу попарных расстояний между ними (см. картинку). То есть взаимное расположение айдишников в test_ids.npy - важная фича, если треки следуют непосредственно друг за другом, они скорее всего являются кавером, а если между ними 2000 других айдишников - точно нет. Заэксплуатиривоть это можно разными способами, например CatBoostRanker на двух фичах - расстояние между эмбеддингами и расстояние между айдишниками - давал порядка 0.98 public LB. Я ожидал, что больше людей найдет лик, поэтому оверкиллил эту часть: обучал u-net, которому на вход подается матрица попарных расстояний, а выход трактуем как матрицу скоров (одна строка - один трек, для которого нужно найти каверы, а сами значения в строке - это скоры треков, находящихся слева и справа от данного в списке айдишников). Использовал лосс для задачи ранжирования из pytorchltr; реализовал маскирование, чтобы учитывать для каждого трека ровно по 100 соседей слева и справа из списка айдишников; аугментацию для трейна за счет шаффлинга порядка клик и порядка треков внутри клик.

BY adapt compete evolve or die


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/abacabadabacaba404/68

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Messages are not fully encrypted by default. That means the company could, in theory, access the content of the messages, or be forced to hand over the data at the request of a government. The gold standard of encryption, known as end-to-end encryption, where only the sender and person who receives the message are able to see it, is available on Telegram only when the Secret Chat function is enabled. Voice and video calls are also completely encrypted. Emerson Brooking, a disinformation expert at the Atlantic Council's Digital Forensic Research Lab, said: "Back in the Wild West period of content moderation, like 2014 or 2015, maybe they could have gotten away with it, but it stands in marked contrast with how other companies run themselves today." But the Ukraine Crisis Media Center's Tsekhanovska points out that communications are often down in zones most affected by the war, making this sort of cross-referencing a luxury many cannot afford. This provided opportunity to their linked entities to offload their shares at higher prices and make significant profits at the cost of unsuspecting retail investors.
from it


Telegram adapt compete evolve or die
FROM American