Типы данных или как не ошибиться с выбором критерия
Привет, коллега!
😐 В самом начале разговора об анализе данных стоит обсудить какие данные вообще бывают. Потому что от этого будет зависеть выбор критерия для сравнения твоих экспериментальных групп.
В целом данные бывают количественные и качественные. Количественные данные можно упорядочить и с ними можно совершать различные арифметические действия. Качественные данные описывают свойства объекта и тут уж как говориться, ни отнять, ни прибавить.
В свою очередь количественные данные делятся на непрерывные и дискретные. 🟡 Непрерывные данные могут быть не целыми числами и их можно дробить настолько, насколько нам позволят наши приборы. Например, длина крыла подпотолочного лампонюха может быть 1 метр, может 1,12 м, может 1,12237467 метра и так далее. 🟡 Дискретные же данные не могут принимать нецелочисленные значения. Как правило, это количество чего-то, например, 5 студентов в потоковой аудитории. А вот полтора землекопа уже быть не может.
⭐️ В зависимости от типа данных ты будешь выбирать параметрические или непараметрические критерии для анализа. В случае дискретных количественных данных - всегда используй непараметрические критерии. Сколько же студентов и аспирантов посыпались на сравнении количества клеток t-критерием Стьюдента... Не становись одним из них 😇
Качественные данные описывают некоторое качество объекта и бывают ранговыми и номинальными. 🟡 Ранговые данные можно перепутать с дискретными количественными, так как они тоже только целочисленные, но при этом с ними бессмысленно проводить какие-то арифметические действия. Например, пятибалльная шкала ураганов. Находятся, конечно, извращенцы, считающие средний бал ураганов по региону. А потом эти умельцы готовят инфраструктуру к средним 3 баллам, которая летит к чертям собачьим в 5 баллов. 🟡 Номинальные данные описывают качество объекта, который нельзя упорядочить. Например, цвет глаз или предпочтения в музыкальных жанрах 👻
🥳 Для тех, кто уже немного искушён в статистике я принесла схемки 👇, которые помогут выбрать правильный критерий для анализа. А тем, кто только начинает этот путь вместе со мной - рекомендую добавить картинки в сохранёнки, ведь мы ещё к ним вернёмся.
Типы данных или как не ошибиться с выбором критерия
Привет, коллега!
😐 В самом начале разговора об анализе данных стоит обсудить какие данные вообще бывают. Потому что от этого будет зависеть выбор критерия для сравнения твоих экспериментальных групп.
В целом данные бывают количественные и качественные. Количественные данные можно упорядочить и с ними можно совершать различные арифметические действия. Качественные данные описывают свойства объекта и тут уж как говориться, ни отнять, ни прибавить.
В свою очередь количественные данные делятся на непрерывные и дискретные. 🟡 Непрерывные данные могут быть не целыми числами и их можно дробить настолько, насколько нам позволят наши приборы. Например, длина крыла подпотолочного лампонюха может быть 1 метр, может 1,12 м, может 1,12237467 метра и так далее. 🟡 Дискретные же данные не могут принимать нецелочисленные значения. Как правило, это количество чего-то, например, 5 студентов в потоковой аудитории. А вот полтора землекопа уже быть не может.
⭐️ В зависимости от типа данных ты будешь выбирать параметрические или непараметрические критерии для анализа. В случае дискретных количественных данных - всегда используй непараметрические критерии. Сколько же студентов и аспирантов посыпались на сравнении количества клеток t-критерием Стьюдента... Не становись одним из них 😇
Качественные данные описывают некоторое качество объекта и бывают ранговыми и номинальными. 🟡 Ранговые данные можно перепутать с дискретными количественными, так как они тоже только целочисленные, но при этом с ними бессмысленно проводить какие-то арифметические действия. Например, пятибалльная шкала ураганов. Находятся, конечно, извращенцы, считающие средний бал ураганов по региону. А потом эти умельцы готовят инфраструктуру к средним 3 баллам, которая летит к чертям собачьим в 5 баллов. 🟡 Номинальные данные описывают качество объекта, который нельзя упорядочить. Например, цвет глаз или предпочтения в музыкальных жанрах 👻
🥳 Для тех, кто уже немного искушён в статистике я принесла схемки 👇, которые помогут выбрать правильный критерий для анализа. А тем, кто только начинает этот путь вместе со мной - рекомендую добавить картинки в сохранёнки, ведь мы ещё к ним вернёмся.
Markets continued to grapple with the economic and corporate earnings implications relating to the Russia-Ukraine conflict. “We have a ton of uncertainty right now,” said Stephanie Link, chief investment strategist and portfolio manager at Hightower Advisors. “We’re dealing with a war, we’re dealing with inflation. We don’t know what it means to earnings.” Oleksandra Matviichuk, a Kyiv-based lawyer and head of the Center for Civil Liberties, called Durov’s position "very weak," and urged concrete improvements. Since its launch in 2013, Telegram has grown from a simple messaging app to a broadcast network. Its user base isn’t as vast as WhatsApp’s, and its broadcast platform is a fraction the size of Twitter, but it’s nonetheless showing its use. While Telegram has been embroiled in controversy for much of its life, it has become a vital source of communication during the invasion of Ukraine. But, if all of this is new to you, let us explain, dear friends, what on Earth a Telegram is meant to be, and why you should, or should not, need to care. After fleeing Russia, the brothers founded Telegram as a way to communicate outside the Kremlin's orbit. They now run it from Dubai, and Pavel Durov says it has more than 500 million monthly active users. "For Telegram, accountability has always been a problem, which is why it was so popular even before the full-scale war with far-right extremists and terrorists from all over the world," she told AFP from her safe house outside the Ukrainian capital.
from it