Telegram Group & Telegram Channel
А вот и наша статья подоспела - Cache Me if You Can: Accelerating Diffusion Models through Block Caching

Как я уже упоминал, наша команда в Meta GenAI занимается ускорением диффузии. В этой статье мы ускоряем генерацию изображений до x1.8 раза без потери качества с помощью умного кеширования во время инференса.

Как?
Для генерации одной картинки обычно требуется сделать много прогонов через модель Unet, например 50 DDIM шагов. Мы тут подметили, что активации Spatial-Attention блоков довольно гладко меняются от шага к шагу, и паттерн их изменения не зависит от промпта. Естественно, мы подумали, почему бы не кешировать фичи тех блоков, которые меняются наиболее медленно и пересчитывать их только раз в несколько шагов. Понт в том, что львиная доля всех вычислений происходит именно в attention блоках, поэтому пропуская их вычисления хотя бы на некоторых шагах, мы сильно ускоряем генерацию.

Все блоки разные, и их активации меняются с разной скоростью. Поэтому мы построили графики изменений активаций для каждого блока (усреднили по 64 запросам) и использовали их чтобы автоматически найти когда и какие блоки можно кешировать, и как долго должен жить кеш для каждого из блоков.

Чтобы убрать мелкие артифакты после кеширования, мы дополнительно обучаем time-dependent scale и shift параметры для каждого выходнрго канала кешируемых блоков. Это помогает сгладить разницу распределений между "честно посчитанными" фичами и закеширвоанными.

В итоге, получили x1.5-1.8 ускорение, причем FID скор даже улучшился после применения кеширования. А результаты Human Eval показали, что при фиксированном времени генерации модель с кешированием выдает более качественные картинки чем бейзлайн.

На каких архитектурах тестировали:
- LDM 512x512 (та же архитектура как у SD 1.5, но натренированная нами внутри GenAI)
- Наша Emu 768x768 с 2.7B параметров.

То есть метод гибок и может подстраиваться под модели разных размеров, причем расписание кеширования разных блоков строится автоматически. Взлетит и на SDXL тоже.

Статья на Arxiv

@ai_newz



group-telegram.com/ai_newz/2333
Create:
Last Update:

А вот и наша статья подоспела - Cache Me if You Can: Accelerating Diffusion Models through Block Caching

Как я уже упоминал, наша команда в Meta GenAI занимается ускорением диффузии. В этой статье мы ускоряем генерацию изображений до x1.8 раза без потери качества с помощью умного кеширования во время инференса.

Как?
Для генерации одной картинки обычно требуется сделать много прогонов через модель Unet, например 50 DDIM шагов. Мы тут подметили, что активации Spatial-Attention блоков довольно гладко меняются от шага к шагу, и паттерн их изменения не зависит от промпта. Естественно, мы подумали, почему бы не кешировать фичи тех блоков, которые меняются наиболее медленно и пересчитывать их только раз в несколько шагов. Понт в том, что львиная доля всех вычислений происходит именно в attention блоках, поэтому пропуская их вычисления хотя бы на некоторых шагах, мы сильно ускоряем генерацию.

Все блоки разные, и их активации меняются с разной скоростью. Поэтому мы построили графики изменений активаций для каждого блока (усреднили по 64 запросам) и использовали их чтобы автоматически найти когда и какие блоки можно кешировать, и как долго должен жить кеш для каждого из блоков.

Чтобы убрать мелкие артифакты после кеширования, мы дополнительно обучаем time-dependent scale и shift параметры для каждого выходнрго канала кешируемых блоков. Это помогает сгладить разницу распределений между "честно посчитанными" фичами и закеширвоанными.

В итоге, получили x1.5-1.8 ускорение, причем FID скор даже улучшился после применения кеширования. А результаты Human Eval показали, что при фиксированном времени генерации модель с кешированием выдает более качественные картинки чем бейзлайн.

На каких архитектурах тестировали:
- LDM 512x512 (та же архитектура как у SD 1.5, но натренированная нами внутри GenAI)
- Наша Emu 768x768 с 2.7B параметров.

То есть метод гибок и может подстраиваться под модели разных размеров, причем расписание кеширования разных блоков строится автоматически. Взлетит и на SDXL тоже.

Статья на Arxiv

@ai_newz

BY эйай ньюз







Share with your friend now:
group-telegram.com/ai_newz/2333

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

"There is a significant risk of insider threat or hacking of Telegram systems that could expose all of these chats to the Russian government," said Eva Galperin with the Electronic Frontier Foundation, which has called for Telegram to improve its privacy practices. Meanwhile, a completely redesigned attachment menu appears when sending multiple photos or vides. Users can tap "X selected" (X being the number of items) at the top of the panel to preview how the album will look in the chat when it's sent, as well as rearrange or remove selected media. Telegram, which does little policing of its content, has also became a hub for Russian propaganda and misinformation. Many pro-Kremlin channels have become popular, alongside accounts of journalists and other independent observers. Crude oil prices edged higher after tumbling on Thursday, when U.S. West Texas intermediate slid back below $110 per barrel after topping as much as $130 a barrel in recent sessions. Still, gas prices at the pump rose to fresh highs. Update March 8, 2022: EFF has clarified that Channels and Groups are not fully encrypted, end-to-end, updated our post to link to Telegram’s FAQ for Cloud and Secret chats, updated to clarify that auto-delete is available for group and channel admins, and added some additional links.
from it


Telegram эйай ньюз
FROM American