Notice: file_put_contents(): Write of 11343 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50
эйай ньюз | Telegram Webview: ai_newz/2792 -
Telegram Group & Telegram Channel
Когда у нас закончатся данные для тренировки?

Короткий ответ - осталось на донышке. Если говорить о текстовых.

Ребята из Epoch AI провели добротную оценку оставшейся текстовой информации во всем вебе.

Всего примерно 500Т токенов, из них юзабельно от силы 100Т. Иии закончатся они уже к 28 году... если брать историческую скорость развития.

Но уважаемые коллеги из Мета показали нам, что количество токенов, которое оптимально использовать для модели фиксированного размера (шиншила оптимал), сильно занижено. А точнее, если есть лишний компьют, то можно и потренировать и дольше, чтобы выжать из модели всё до конца.

Так вот если перетренировывать модели в 5 раз, то дата у нас закончится в 27м, а если в 100 раз, то на следующий новый год в 25м : )
Для справки, если забыли, то LlaMa3-8B перетренировали в 70 раз. Вот здесь об этом писал подробнее.

Что делать?

Оказалось, что у соцсетей есть жёсткий читкод. До этого говорилось только об открытой инфе, которую можно нагуглить. Оказывается, в чатиках в 10 раз (очень примерно) больше данных чем во всем вебе.

Поэтому те компании, которые научатся использовать эти данные могут оказаться на коне. Хотя данные из соцсетей и так парсят все кому не лень, но сделать это на большом масштабе по-черному вряд-ли получится из-за лимитов и банов.

Еще есть второй способ выхода из данного плато (все равно в чатиках какая-то дичь) – это synthetic data, когда нейросетки "учат" друг друга. Но там есть свои ещё нерешённые проблемы с качеством таких данных.

Ещё добавлю сюда, что мультимодальные данные (вроде видео с YouTube) будут в скором времени тоже очень сильно решать для больших нейросетей. Пока ведь этот богатый ресурс из миллионов часов видео никто активно не использует для обучения.

В общем, если с текстовыми данными и будет затык в ближайшие 5 лет, то есть ещё куча мультимодальных данных (подкасты, видео, игры). А ещё мы сможем запустить роботов собирать данные в реальном мире, как например это делает Тесла.

Тред
Репорт 

@ai_newz



group-telegram.com/ai_newz/2792
Create:
Last Update:

Когда у нас закончатся данные для тренировки?

Короткий ответ - осталось на донышке. Если говорить о текстовых.

Ребята из Epoch AI провели добротную оценку оставшейся текстовой информации во всем вебе.

Всего примерно 500Т токенов, из них юзабельно от силы 100Т. Иии закончатся они уже к 28 году... если брать историческую скорость развития.

Но уважаемые коллеги из Мета показали нам, что количество токенов, которое оптимально использовать для модели фиксированного размера (шиншила оптимал), сильно занижено. А точнее, если есть лишний компьют, то можно и потренировать и дольше, чтобы выжать из модели всё до конца.

Так вот если перетренировывать модели в 5 раз, то дата у нас закончится в 27м, а если в 100 раз, то на следующий новый год в 25м : )
Для справки, если забыли, то LlaMa3-8B перетренировали в 70 раз. Вот здесь об этом писал подробнее.

Что делать?

Оказалось, что у соцсетей есть жёсткий читкод. До этого говорилось только об открытой инфе, которую можно нагуглить. Оказывается, в чатиках в 10 раз (очень примерно) больше данных чем во всем вебе.

Поэтому те компании, которые научатся использовать эти данные могут оказаться на коне. Хотя данные из соцсетей и так парсят все кому не лень, но сделать это на большом масштабе по-черному вряд-ли получится из-за лимитов и банов.

Еще есть второй способ выхода из данного плато (все равно в чатиках какая-то дичь) – это synthetic data, когда нейросетки "учат" друг друга. Но там есть свои ещё нерешённые проблемы с качеством таких данных.

Ещё добавлю сюда, что мультимодальные данные (вроде видео с YouTube) будут в скором времени тоже очень сильно решать для больших нейросетей. Пока ведь этот богатый ресурс из миллионов часов видео никто активно не использует для обучения.

В общем, если с текстовыми данными и будет затык в ближайшие 5 лет, то есть ещё куча мультимодальных данных (подкасты, видео, игры). А ещё мы сможем запустить роботов собирать данные в реальном мире, как например это делает Тесла.

Тред
Репорт 

@ai_newz

BY эйай ньюз




Share with your friend now:
group-telegram.com/ai_newz/2792

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Since January 2022, the SC has received a total of 47 complaints and enquiries on illegal investment schemes promoted through Telegram. These fraudulent schemes offer non-existent investment opportunities, promising very attractive and risk-free returns within a short span of time. They commonly offer unrealistic returns of as high as 1,000% within 24 hours or even within a few hours. Telegram Messenger Blocks Navalny Bot During Russian Election Friday’s performance was part of a larger shift. For the week, the Dow, S&P 500 and Nasdaq fell 2%, 2.9%, and 3.5%, respectively. In 2018, Russia banned Telegram although it reversed the prohibition two years later. "And that set off kind of a battle royale for control of the platform that Durov eventually lost," said Nathalie Maréchal of the Washington advocacy group Ranking Digital Rights.
from it


Telegram эйай ньюз
FROM American