Telegram Group & Telegram Channel
Наброс-вопрос про DS в “продуктовых компаниях”.
Буду осознанно сгущать краски, представим что мир черно-белый

Никогда не понимал вот это вот “продуктовая компания”, “все является продуктом” (реально скрам уже в бухгалтерию внедрили) и как в этом всем должен работать и развиваться DS, строить карьеру, расти в ML. Это же анекдот – знания DS получают на каггле, при подготовке к собеседованиям и на халтурках (когда сам с нуля за мелкий прайс).
Вообще кстати на фразу “относись к продукту как к своему бизнесу” реагирую просто – participation in success есть? Нет? Ну тогда уже бегу, ага. Но сейчас все же про DS

Особенно часто DS работает где-нибудь в change, по условному scrum – там где много унижений и микроменеджмента (чего только ежедневные стендапы стоят – привет, столыпинский вагон; только представьте чтобы совет директоров или правление стоя совещалось – и почасовые оценки задач грумингом), а на выходе минимум 20% времени команды уходит на всякие “церемонии”, фасилитаторов и на переключение между встречами. Хотя и без меня на эту тему написано прилично

И вот бесконечный бег, который поделен на “спринты” и “супер-спринты” – фичу за фичей. А чтобы получить промоушен надо решить технически сложную задачу!
Погодите, а разве развитие продукта не про максимально эффективные решения? Типа вместо двух моделей сделаем одну, вместо модели сделаем бизнес-правило и пр. – если метрики на A/B почти одинаковые? Не каждое стат. значимое изменение метрики приводит к росту прибыли – и вроде как задача продакта вести хозяйство разумно. А что если в продукте нет сложных ML-задач? То есть ты делаешь все супер, но задачи “недостаточно сложные” чтобы тебя повысить?

И другой поинт – если ты живешь спринтами и задачами по 4 часа что ты там сложное решишь?

Явно такие мысли не только у меня – от мотивированных именно на ML стажеров и кандидатов частый запрос – а можно куда-нибудь в RnD? И не то чтобы эти ребята мечтают о карьере академиков и писать статьи, им просто не в кайф быть крысой в колесе.

И их можно понять.
Особенно когда они выгорают, а им предлагают максимум “ротацию” в аналогичного уровня сложности продукт – то есть шило на мыло. (Хотя инструмент ротации я очень люблю – он позволяет создавать конкуренцию между продактами за DS и работает на повышение окладов)

Где-то слышал (мб вранье) что скрам придумали для бадишопов – чтобы клиенты получали иллюзию максимального контроля за своими деньгами.

Еще стоит подумать что бывает когда продукт закрывают как неперспективный. Увольняться из компании? А если компания нравится?

Итак, что делать если ты в продуктовой компании, хочешь расти по карьере, но в ML а не в продакта? (а случаи когда DS был вынужден перейти в PO у меня перед глазами)

Свой ответ напишу в сл посте

Если кто знает правильный ответ -- велкам в каменты



group-telegram.com/datarascals/131
Create:
Last Update:

Наброс-вопрос про DS в “продуктовых компаниях”.
Буду осознанно сгущать краски, представим что мир черно-белый

Никогда не понимал вот это вот “продуктовая компания”, “все является продуктом” (реально скрам уже в бухгалтерию внедрили) и как в этом всем должен работать и развиваться DS, строить карьеру, расти в ML. Это же анекдот – знания DS получают на каггле, при подготовке к собеседованиям и на халтурках (когда сам с нуля за мелкий прайс).
Вообще кстати на фразу “относись к продукту как к своему бизнесу” реагирую просто – participation in success есть? Нет? Ну тогда уже бегу, ага. Но сейчас все же про DS

Особенно часто DS работает где-нибудь в change, по условному scrum – там где много унижений и микроменеджмента (чего только ежедневные стендапы стоят – привет, столыпинский вагон; только представьте чтобы совет директоров или правление стоя совещалось – и почасовые оценки задач грумингом), а на выходе минимум 20% времени команды уходит на всякие “церемонии”, фасилитаторов и на переключение между встречами. Хотя и без меня на эту тему написано прилично

И вот бесконечный бег, который поделен на “спринты” и “супер-спринты” – фичу за фичей. А чтобы получить промоушен надо решить технически сложную задачу!
Погодите, а разве развитие продукта не про максимально эффективные решения? Типа вместо двух моделей сделаем одну, вместо модели сделаем бизнес-правило и пр. – если метрики на A/B почти одинаковые? Не каждое стат. значимое изменение метрики приводит к росту прибыли – и вроде как задача продакта вести хозяйство разумно. А что если в продукте нет сложных ML-задач? То есть ты делаешь все супер, но задачи “недостаточно сложные” чтобы тебя повысить?

И другой поинт – если ты живешь спринтами и задачами по 4 часа что ты там сложное решишь?

Явно такие мысли не только у меня – от мотивированных именно на ML стажеров и кандидатов частый запрос – а можно куда-нибудь в RnD? И не то чтобы эти ребята мечтают о карьере академиков и писать статьи, им просто не в кайф быть крысой в колесе.

И их можно понять.
Особенно когда они выгорают, а им предлагают максимум “ротацию” в аналогичного уровня сложности продукт – то есть шило на мыло. (Хотя инструмент ротации я очень люблю – он позволяет создавать конкуренцию между продактами за DS и работает на повышение окладов)

Где-то слышал (мб вранье) что скрам придумали для бадишопов – чтобы клиенты получали иллюзию максимального контроля за своими деньгами.

Еще стоит подумать что бывает когда продукт закрывают как неперспективный. Увольняться из компании? А если компания нравится?

Итак, что делать если ты в продуктовой компании, хочешь расти по карьере, но в ML а не в продакта? (а случаи когда DS был вынужден перейти в PO у меня перед глазами)

Свой ответ напишу в сл посте

Если кто знает правильный ответ -- велкам в каменты

BY Дата канальи — про «специалистов» в данных / ML / AI




Share with your friend now:
group-telegram.com/datarascals/131

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Individual messages can be fully encrypted. But the user has to turn on that function. It's not automatic, as it is on Signal and WhatsApp. NEWS In 2018, Russia banned Telegram although it reversed the prohibition two years later. In view of this, the regulator has cautioned investors not to rely on such investment tips / advice received through social media platforms. It has also said investors should exercise utmost caution while taking investment decisions while dealing in the securities market. Lastly, the web previews of t.me links have been given a new look, adding chat backgrounds and design elements from the fully-features Telegram Web client.
from it


Telegram Дата канальи — про «специалистов» в данных / ML / AI
FROM American