Telegram Group & Telegram Channel
Кейс когда топ-манагер оказался далеко не канальей 😎 (правда это был старший вице-президент) , а направил как собрать данных для модели.

Раз в две недели я докладывал топу об успехах советского балета, увеличении надоев и космической программе благодаря внедрению ML, но חלב рано или поздно заканчивается – откуда брать новые фичи для моделей NBO/NBA? Как узнать конкретно почему наше предложение нерелевантное? Это позволит и выборку переразметить и причины попробовать устранить.

Иногда, конечно, приходили на почту поддержки крики души от клиентских менеджеров – в духе “вы там говном упоролись? Зачем мне мне лид про застраховать продукцию клиента? Это рыболовный флот – мне селедку в Атлантическом океане им застраховать?!”.

Короче, сбор обратной связи был реализован специфически – обязательное поле "комментарий", но обычно там стояли прочерки, хотя от людей, не обделенных фантазией, попадались и "пиво, чипсы, водка" -- видимо, что-то им верно подсказывало что читать их комментарии никто не будет. Угадайте наиболее частую категорию – очевидно “прочее”, , и наличие такой категории на первом уровне совсем печально. А процесс выглядел так -- раз в неделю специально обученной даме присылали выгрузку в excel, она выбрала "случайно" -- на самом деле просто первые 10 строк, долго думала и делала слайд с этими 10 комментариями и своих фантазиях о причинах такого фидбека.

А посколько KPI на деньги от моделей был только у меня, то рост конверсии от лидов тоже беспокоил в первую очередь меня (бизнес и так свои бонусы получит -- сетка план как-нибудь да выполнит).

И вот встал вопрос об обратной связи, а непонятно как правильно делать опрос. Позапускали BERTTopic на комментариях к лидам (а их было не так много), поморочили голову бизнесу. Ок, ценовые условия продукта, неценовые условия продукта, решение принимается в другом месте, продукт вообще не применим к клиенту (проектное финансирование тому кто ничего не строит или долгие депозиты компании с большими финансовыми проблемами и тд) и немного других. Переделали формы – не летит.

На очередном докладе шеф лишь вздохнул и отправил читать классику – "Жалоба как подарок” .

Внезапно это оказалось самой полезной книжкой по DS (хотя она вообще вроде бы про другое) за тот квартал. В итоге категорий стало в районе 25, они расположились по уровням, отмечались они галочками, в прочее падало менее 0.2%, поле "комментарий" перестало быть обязательным, на категории сделали модель-классификатор, а у продуктовиков появился инструмент замера фидбеков при запуске нового продукта – прямо в BI вывели как меняются доли отказов по продуктовым условиям, когда конкуренты начинают демпинговать и все в таком духе.

Угадайте, какой самый частый инсайт был для любителей поставить продукт на полку?
Тех. поддержку надо с продуктом поставлять! И вот эта штука существенно растила конверсии. Сложно было без моделей и итераций с обратной связью догадаться, ведь так? :facepalm:

А книжку не устаю рекламировать -- не только в DS поможет 🤓



group-telegram.com/datarascals/147
Create:
Last Update:

Кейс когда топ-манагер оказался далеко не канальей 😎 (правда это был старший вице-президент) , а направил как собрать данных для модели.

Раз в две недели я докладывал топу об успехах советского балета, увеличении надоев и космической программе благодаря внедрению ML, но חלב рано или поздно заканчивается – откуда брать новые фичи для моделей NBO/NBA? Как узнать конкретно почему наше предложение нерелевантное? Это позволит и выборку переразметить и причины попробовать устранить.

Иногда, конечно, приходили на почту поддержки крики души от клиентских менеджеров – в духе “вы там говном упоролись? Зачем мне мне лид про застраховать продукцию клиента? Это рыболовный флот – мне селедку в Атлантическом океане им застраховать?!”.

Короче, сбор обратной связи был реализован специфически – обязательное поле "комментарий", но обычно там стояли прочерки, хотя от людей, не обделенных фантазией, попадались и "пиво, чипсы, водка" -- видимо, что-то им верно подсказывало что читать их комментарии никто не будет. Угадайте наиболее частую категорию – очевидно “прочее”, , и наличие такой категории на первом уровне совсем печально. А процесс выглядел так -- раз в неделю специально обученной даме присылали выгрузку в excel, она выбрала "случайно" -- на самом деле просто первые 10 строк, долго думала и делала слайд с этими 10 комментариями и своих фантазиях о причинах такого фидбека.

А посколько KPI на деньги от моделей был только у меня, то рост конверсии от лидов тоже беспокоил в первую очередь меня (бизнес и так свои бонусы получит -- сетка план как-нибудь да выполнит).

И вот встал вопрос об обратной связи, а непонятно как правильно делать опрос. Позапускали BERTTopic на комментариях к лидам (а их было не так много), поморочили голову бизнесу. Ок, ценовые условия продукта, неценовые условия продукта, решение принимается в другом месте, продукт вообще не применим к клиенту (проектное финансирование тому кто ничего не строит или долгие депозиты компании с большими финансовыми проблемами и тд) и немного других. Переделали формы – не летит.

На очередном докладе шеф лишь вздохнул и отправил читать классику – "Жалоба как подарок” .

Внезапно это оказалось самой полезной книжкой по DS (хотя она вообще вроде бы про другое) за тот квартал. В итоге категорий стало в районе 25, они расположились по уровням, отмечались они галочками, в прочее падало менее 0.2%, поле "комментарий" перестало быть обязательным, на категории сделали модель-классификатор, а у продуктовиков появился инструмент замера фидбеков при запуске нового продукта – прямо в BI вывели как меняются доли отказов по продуктовым условиям, когда конкуренты начинают демпинговать и все в таком духе.

Угадайте, какой самый частый инсайт был для любителей поставить продукт на полку?
Тех. поддержку надо с продуктом поставлять! И вот эта штука существенно растила конверсии. Сложно было без моделей и итераций с обратной связью догадаться, ведь так? :facepalm:

А книжку не устаю рекламировать -- не только в DS поможет 🤓

BY Дата канальи — про «специалистов» в данных / ML / AI




Share with your friend now:
group-telegram.com/datarascals/147

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

On Feb. 27, however, he admitted from his Russian-language account that "Telegram channels are increasingly becoming a source of unverified information related to Ukrainian events." The channel appears to be part of the broader information war that has developed following Russia's invasion of Ukraine. The Kremlin has paid Russian TikTok influencers to push propaganda, according to a Vice News investigation, while ProPublica found that fake Russian fact check videos had been viewed over a million times on Telegram. On Telegram’s website, it says that Pavel Durov “supports Telegram financially and ideologically while Nikolai (Duvov)’s input is technological.” Currently, the Telegram team is based in Dubai, having moved around from Berlin, London and Singapore after departing Russia. Meanwhile, the company which owns Telegram is registered in the British Virgin Islands. Unlike Silicon Valley giants such as Facebook and Twitter, which run very public anti-disinformation programs, Brooking said: "Telegram is famously lax or absent in its content moderation policy." Now safely in France with his spouse and three of his children, Kliuchnikov scrolls through Telegram to learn about the devastation happening in his home country.
from it


Telegram Дата канальи — про «специалистов» в данных / ML / AI
FROM American