Telegram Group & Telegram Channel
Показалось, что в предыдущем посте я недостаточно раскрыл тему того, что вообще делает из человека хорошего рисёрчера.

На эту тему написано множество книг (и ещё больше телегам-постов), но, надеюсь, моя точка зрения кому-то приглянется. Нижеприведённые качества обычно вырабатываются у людей за Ph.D., но, как мне кажется, их можно осознанно тренировать. Как? Записывайтесь на мои курсы осознанности.

Во-первых, (этот пойнт был и в предыдущем посте, но кто ж меня читает) у всех отличных исследователей, кого я знаю, есть неутолимая тяга разбираться в предмете. Где в модели не текут градиенты? Откуда берутся артефакты на картинках? На каких примерах происходят ошибки? Сходится ли модель на игрушечных данных? Последний вопрос – мой любимый; хочется уделить ему особое внимание. Дело в том, что в машинном обучении чаще всего вот эти вот все "настоящие данные" с "ground truth"ом – это всё дикий шумный лес, за которым порой бывает сложно разглядеть, куда, собственно, надо улучшать метод. 🤔

Приведу пример из одной из моих статей. Писал я её в ковидном заточении , когда я увидел на архиве статью под названием "Mincut pooling in Graph Neural Networks" (почему-то после публикации моей статьи её переименовали в куда более модное "Spectral Clustering with Graph Neural Networks for Graph Pooling" 🤔). Я начал играться с их лоссом, но на некоторых графах он у меня не сходился. Для дебага я написал простенький генератор синтетических данных – две гауссианы и k-NN граф на их основе – такой должен хорошо кластеризоваться. Потыкав с генератором, я заметил, что на нецентрированных данных MinCut лосс из статьи не работает. После этого достаточно было разделить лосс на две компоненты и посмотреть, как они оптимизируются в процессе обучения, чтобы понять, что в их статье (шок) никакой кластеризации графа не происходит – происходит только ортогонализация фичей вершин. Это позволило мне понять, куда копать, и написать неплохую статью, которую после трёх лет страданий всё же опубликовали в JMLR. Эти эксперименты, конечно, в финальную версию статьи не прошли.

Во-вторых, это умение отделять зёрна от плевел (pop quiz: кто помнит, кто такие плевелы?) в чужих статьях. Такое вот умение читать между строк и сквозь них 🤔 – вот это утвеждение сделано потому что авторам нужно было что-то сказать или они и правда проверили все остальные альтернативы? Правда ли в этом месте нужен вот этот компонент или его ввернули ради красивой теоремы в аппендиксе? Звучит довольно очевидно, но слишком часто мне приходится разубеждать инженеров, которые вычитывают в литературе какую-нибудь неподтверждённую дрянь и кидаются её реализовывать.

Перефразируя Камю, рисёрчера делает рисёрчером в большей степени то, о чём он умалчивает, нежели то, что он пишет в статьях. Вместе с подписчиками надеемся на то, что меня отпустит с пацанскими цитатами. 🐺
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/epsiloncorrect/165
Create:
Last Update:

Показалось, что в предыдущем посте я недостаточно раскрыл тему того, что вообще делает из человека хорошего рисёрчера.

На эту тему написано множество книг (и ещё больше телегам-постов), но, надеюсь, моя точка зрения кому-то приглянется. Нижеприведённые качества обычно вырабатываются у людей за Ph.D., но, как мне кажется, их можно осознанно тренировать. Как? Записывайтесь на мои курсы осознанности.

Во-первых, (этот пойнт был и в предыдущем посте, но кто ж меня читает) у всех отличных исследователей, кого я знаю, есть неутолимая тяга разбираться в предмете. Где в модели не текут градиенты? Откуда берутся артефакты на картинках? На каких примерах происходят ошибки? Сходится ли модель на игрушечных данных? Последний вопрос – мой любимый; хочется уделить ему особое внимание. Дело в том, что в машинном обучении чаще всего вот эти вот все "настоящие данные" с "ground truth"ом – это всё дикий шумный лес, за которым порой бывает сложно разглядеть, куда, собственно, надо улучшать метод. 🤔

Приведу пример из одной из моих статей. Писал я её в ковидном заточении , когда я увидел на архиве статью под названием "Mincut pooling in Graph Neural Networks" (почему-то после публикации моей статьи её переименовали в куда более модное "Spectral Clustering with Graph Neural Networks for Graph Pooling" 🤔). Я начал играться с их лоссом, но на некоторых графах он у меня не сходился. Для дебага я написал простенький генератор синтетических данных – две гауссианы и k-NN граф на их основе – такой должен хорошо кластеризоваться. Потыкав с генератором, я заметил, что на нецентрированных данных MinCut лосс из статьи не работает. После этого достаточно было разделить лосс на две компоненты и посмотреть, как они оптимизируются в процессе обучения, чтобы понять, что в их статье (шок) никакой кластеризации графа не происходит – происходит только ортогонализация фичей вершин. Это позволило мне понять, куда копать, и написать неплохую статью, которую после трёх лет страданий всё же опубликовали в JMLR. Эти эксперименты, конечно, в финальную версию статьи не прошли.

Во-вторых, это умение отделять зёрна от плевел (pop quiz: кто помнит, кто такие плевелы?) в чужих статьях. Такое вот умение читать между строк и сквозь них 🤔 – вот это утвеждение сделано потому что авторам нужно было что-то сказать или они и правда проверили все остальные альтернативы? Правда ли в этом месте нужен вот этот компонент или его ввернули ради красивой теоремы в аппендиксе? Звучит довольно очевидно, но слишком часто мне приходится разубеждать инженеров, которые вычитывают в литературе какую-нибудь неподтверждённую дрянь и кидаются её реализовывать.

Перефразируя Камю, рисёрчера делает рисёрчером в большей степени то, о чём он умалчивает, нежели то, что он пишет в статьях. Вместе с подписчиками надеемся на то, что меня отпустит с пацанскими цитатами. 🐺

BY epsilon correct


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/epsiloncorrect/165

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Now safely in France with his spouse and three of his children, Kliuchnikov scrolls through Telegram to learn about the devastation happening in his home country. What distinguishes the app from competitors is its use of what's known as channels: Public or private feeds of photos and videos that can be set up by one person or an organization. The channels have become popular with on-the-ground journalists, aid workers and Ukrainian President Volodymyr Zelenskyy, who broadcasts on a Telegram channel. The channels can be followed by an unlimited number of people. Unlike Facebook, Twitter and other popular social networks, there is no advertising on Telegram and the flow of information is not driven by an algorithm. The Security Service of Ukraine said in a tweet that it was able to effectively target Russian convoys near Kyiv because of messages sent to an official Telegram bot account called "STOP Russian War." Additionally, investors are often instructed to deposit monies into personal bank accounts of individuals who claim to represent a legitimate entity, and/or into an unrelated corporate account. To lend credence and to lure unsuspecting victims, perpetrators usually claim that their entity and/or the investment schemes are approved by financial authorities.
from it


Telegram epsilon correct
FROM American