Telegram Group & Telegram Channel
DreamStyler: Paint by Style Inversion with Text-to-Image Diffusion Models #style_transfer #paper

Не очень новая (декабрь 2023) статья от Harvard University, про стилизацию картинок в задачах text-2-image и image-2-image.

В подходе используется Textual Inversion механизм, где обучаются эмбединги токена, обозначающего стиль. Код в репозитории сделан на модели Stable Diffusion v1.5, но его можно будет переписать на более новые версии. Возможно совмещение с любыми подходящими ControlNet, например, с картой глубины.

Особенность подхода в том, что одновременно учится несколько экземпляров обучаемого токена. Обучение происходит в 2 этапа. Сначала учится один экземпляр обучаемого токена. Для этого составляется специальный текстовый промпт "Painting in <S*> style", включающий в себя обучаемый токен <S*> и описание картинки стиля, полученное через BLIP-2. На втором этапе весь процесс денойзинга (обычно 50 шагов) разделяется на несколько стадий (оптимальное число 6). На каждой стадии учится отдельный экземпляр обучаемого токена. За счет этого достигается более точное обуславливание в процессе денойзинга.

В работе проведены интересные эксперименты по подаче эмбедингов от совсем разных картинок стиля на разных стадиях генерации одной картинки. Например, на рисунке показано, что если стилизовать один текстовый запрос одновременно тремя картинками, и на каждом шаге денойзинга одновременно обуславливать на все три картинки, то результат получается смазанным и невыразительным. А если разделить это по стадиям, и подавать одну картинку в начале процесса, другую в середине, и третью в конце, то от начальных картинок будут перенесены общая структура и крупные детали, а от конечных стадий — мелкие детали, которые прорисованы более тонко.

Дополнительно дается объяснение того, как влияет на генерацию параметр guidance_scale, в зависимости от того, насколько тонкими/грубыми являются детали стиля. Если стиль определяется крупно-масштабными деталями, то они будут перенесены практически при любых значениях guidance_scale. А если стиль заключен в очень тонких деталях маленького размера, то качество переноса стиля будет улучшаться с увеличением guidance_scale .

🔥 Project Page
💻 Github
📜 Paper

@gentech_lab
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/gentech_lab/87
Create:
Last Update:

DreamStyler: Paint by Style Inversion with Text-to-Image Diffusion Models #style_transfer #paper

Не очень новая (декабрь 2023) статья от Harvard University, про стилизацию картинок в задачах text-2-image и image-2-image.

В подходе используется Textual Inversion механизм, где обучаются эмбединги токена, обозначающего стиль. Код в репозитории сделан на модели Stable Diffusion v1.5, но его можно будет переписать на более новые версии. Возможно совмещение с любыми подходящими ControlNet, например, с картой глубины.

Особенность подхода в том, что одновременно учится несколько экземпляров обучаемого токена. Обучение происходит в 2 этапа. Сначала учится один экземпляр обучаемого токена. Для этого составляется специальный текстовый промпт "Painting in <S*> style", включающий в себя обучаемый токен <S*> и описание картинки стиля, полученное через BLIP-2. На втором этапе весь процесс денойзинга (обычно 50 шагов) разделяется на несколько стадий (оптимальное число 6). На каждой стадии учится отдельный экземпляр обучаемого токена. За счет этого достигается более точное обуславливание в процессе денойзинга.

В работе проведены интересные эксперименты по подаче эмбедингов от совсем разных картинок стиля на разных стадиях генерации одной картинки. Например, на рисунке показано, что если стилизовать один текстовый запрос одновременно тремя картинками, и на каждом шаге денойзинга одновременно обуславливать на все три картинки, то результат получается смазанным и невыразительным. А если разделить это по стадиям, и подавать одну картинку в начале процесса, другую в середине, и третью в конце, то от начальных картинок будут перенесены общая структура и крупные детали, а от конечных стадий — мелкие детали, которые прорисованы более тонко.

Дополнительно дается объяснение того, как влияет на генерацию параметр guidance_scale, в зависимости от того, насколько тонкими/грубыми являются детали стиля. Если стиль определяется крупно-масштабными деталями, то они будут перенесены практически при любых значениях guidance_scale. А если стиль заключен в очень тонких деталях маленького размера, то качество переноса стиля будет улучшаться с увеличением guidance_scale .

🔥 Project Page
💻 Github
📜 Paper

@gentech_lab

BY Gentech Lab







Share with your friend now:
group-telegram.com/gentech_lab/87

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

In a message on his Telegram channel recently recounting the episode, Durov wrote: "I lost my company and my home, but would do it again – without hesitation." DFR Lab sent the image through Microsoft Azure's Face Verification program and found that it was "highly unlikely" that the person in the second photo was the same as the first woman. The fact-checker Logically AI also found the claim to be false. The woman, Olena Kurilo, was also captured in a video after the airstrike and shown to have the injuries. The regulator said it has been undertaking several campaigns to educate the investors to be vigilant while taking investment decisions based on stock tips. The Security Service of Ukraine said in a tweet that it was able to effectively target Russian convoys near Kyiv because of messages sent to an official Telegram bot account called "STOP Russian War." However, the perpetrators of such frauds are now adopting new methods and technologies to defraud the investors.
from it


Telegram Gentech Lab
FROM American