Вторая часть статьи про сопряжение Клауса Клоусона от Миши Сидоренко!
Forwarded from sydor
Advanced_Clawson_Conjugates.pdf
1.4 MB
Forwarded from Геометрия с Ниловым
Если синие дуги имеют равную градусную меру, то красные отрезки имеют равную длину.
P.S. на предыдущей картинке была ошибка, спасибо обратившим внимание!
P.S. на предыдущей картинке была ошибка, спасибо обратившим внимание!
Неплохой гайд по инверсии.
Telegram
Ботаем геому
Инверсия
Небольшой гайд по инверсии для тех, кто с ней недостаточно знаком
Полезные факты:
1. Можно делать инверсию всей картинки целеком и доказывать новый факт, радиус не имеет значения. Примеры такого решения можно найти по ссылкам ниже.
2. Можно брать…
Небольшой гайд по инверсии для тех, кто с ней недостаточно знаком
Полезные факты:
1. Можно делать инверсию всей картинки целеком и доказывать новый факт, радиус не имеет значения. Примеры такого решения можно найти по ссылкам ниже.
2. Можно брать…
коллега П.Пушкарь задал вопрос, а я не смог сходу ответить — предлагаю решить как задачу
Есть три точки на плоскости, треугольник. Тогда единственным образом определяются радиусы шаров таких, что они касаются плоскости в выбранных точках и друг друга. Внутрь этих шаров и плоскости можно вписать ещё шар. Где он коснется плоскости?
Это должна быть какая-то замечательная точка треугольника — какая?
Есть три точки на плоскости, треугольник. Тогда единственным образом определяются радиусы шаров таких, что они касаются плоскости в выбранных точках и друг друга. Внутрь этих шаров и плоскости можно вписать ещё шар. Где он коснется плоскости?
Это должна быть какая-то замечательная точка треугольника — какая?
коллега Д.Прокопенко напоминает такое прикольное утверждение:
Если сфера, вписанная в треугольную призму, касается нижнего основания в некоторой точке P, то верхнего основания она будет касаться в изогонально сопряженной с ней точке.
Если сфера, вписанная в треугольную призму, касается нижнего основания в некоторой точке P, то верхнего основания она будет касаться в изогонально сопряженной с ней точке.
Forwarded from Геометрия с Ниловым
Кай находится в центре заколдованного круга с радиусом 100 метров. Каждую секунду он делает шаг длиной 1 метр. Перед каждым шагом он объявляет направление, в котором хочет шагнуть. Снежная королева имеет право заставить его сменить направление на противоположное (когда Кай находится внутри круга). Сможет ли Кай действовать так, чтобы выбраться из круга к Герде?
Со Старым Новым годом! 🎄
Со Старым Новым годом! 🎄
Геометрия-канал
Теорема Карно Штейнера. Даны два треугольника ABC и A_1B_1C_1. Оказалось, что перпендикуляры из точек A_1,B_1,C_1 на прямые BC, AC, AB пересекаются в точке P. Докажите, что перпендикуляры из точек A, B, С на стороны B_1C_1, A_1C_1, A_1B_1 пересекаются в одной…
1. Дана бесконечно удаленная прямая и на ней некоторая проективная инволюция. Докажите, что после поворота на 90 градусов она останется проективной инволюцией.
2. Докажите прошлую задачу используя 1.
2. Докажите прошлую задачу используя 1.
Forwarded from Геометрия с Ниловым
Дополнение к картинке К. Малевича.
Докажите, что если черный четырехугольник - квадрат, E и F - середины его сторон, то красный треугольник - правильный.
P.S. Хорошая учебная задача, которая следует изсовпадения двух замечательных точек (центра описанной окружности и точки пересечения медиан) в красном треугольнике. А бывает ли так, что какие-то две замечательные точки совпадают, а треугольник - неправильный?
Докажите, что если черный четырехугольник - квадрат, E и F - середины его сторон, то красный треугольник - правильный.
P.S. Хорошая учебная задача, которая следует из
Геометрия-канал
Очень крутая задача с секретом с MMO 2021(это не Московская олимпиада, а макет в стиле IMO). Предлагалась под номером 3. Картинку не рисую. Пусть ABC - неравнобедренный треугольник. Предположим, что окружность с центром на прямой BC, проходящая через A, окружность…
Давайте обсудим еще эту задачку)
1. Пусть дан шестиугольник ABCA_1B_1C_1 так, что никакие четыре точки не лежат на одной окружности, а прямые AA_1BB_1CC_1 пересекаются в одной точке. Что вы можете сказать про точки P такие, что окружности (APA_1), (BPB_1), (CPC_1) соосны.
2. Решите задачу используя 1.
1. Пусть дан шестиугольник ABCA_1B_1C_1 так, что никакие четыре точки не лежат на одной окружности, а прямые AA_1BB_1CC_1 пересекаются в одной точке. Что вы можете сказать про точки P такие, что окружности (APA_1), (BPB_1), (CPC_1) соосны.
2. Решите задачу используя 1.
Forwarded from Геометрия с Ниловым
Существуют ли в пространстве ломаные, которые имеют следующий вид сверху?
Forwarded from Геометрия с Ниловым
Легко проверить, что если треугольник прямоугольный, то его полупериметр равен сумме диаметра описанной и радиуса вписанной окружностей. Попробуйте доказать геометрически обратное утверждение.
Разделить трапецию на рисунке а) на две подобных трапеции
б) на два подобных четырехугольника, не являющихся трапециями
Источник
б) на два подобных четырехугольника, не являющихся трапециями
Источник
Forwarded from Геометрия с Ниловым
Из четырех равных треугольников сложили выпуклый четырехугольник, у которого нет параллельных сторон. Какую форму могут иметь такие треугольники?
Forwarded from Геометрия с Ниловым
Задача Маркелова С.В. с Тургора
Дана коробка (прямоугольный параллелепипед), по поверхности (но не внутри) которой ползает муравей. Изначально муравей сидит в углу. Верно ли, что среди всех точек поверхности на наибольшем расстоянии от муравья находится противоположный угол? (Расстоянием между двумя точками считаем длину соединяющего их кратчайшего пути по поверхности параллелепипеда.)
P.S. Ответ в задаче неожиданный.
Дана коробка (прямоугольный параллелепипед), по поверхности (но не внутри) которой ползает муравей. Изначально муравей сидит в углу. Верно ли, что среди всех точек поверхности на наибольшем расстоянии от муравья находится противоположный угол? (Расстоянием между двумя точками считаем длину соединяющего их кратчайшего пути по поверхности параллелепипеда.)
P.S. Ответ в задаче неожиданный.
Не самая простая задача на построение
Даны две касающихся внешним образом окружности. Провести прямую так, чтобы она пересекла большую в точках A,B и коснулась меньшей в такой точке С, для которой CB=BA.
Даны две касающихся внешним образом окружности. Провести прямую так, чтобы она пересекла большую в точках A,B и коснулась меньшей в такой точке С, для которой CB=BA.
Forwarded from Геометрия с Ниловым
Все белые четырехугольники - квадраты. Тогда для каждого цвета сумма площадей полосатых многоугольников равна сумме площадей клетчатых.
Forwarded from Всероссийский математический кружок
Добрый день. Во вторник, 11 февраля в 15:30-16:30 по Москве, будет математический кружок 🍩
Title: Квадраты вокруг многоугольников
Speaker: Федор Нилов
Аннотация:
В геометрических конструкциях зачастую оказывается интересным строить на сторонах произвольного многоугольника правильные многоугольники, например, в теоремах Пифагора, Наполеона, Тебо, Ван Обеля. Мы обсудим свойства конструкции из бесконечного числа слоев квадратов вокруг некоторых многоугольников и красивую идею шарнирного доказательства.
Zoom meeting link:
Zoom - Meeting ID: 853 1771 8785 Passcode: 549695
Link: https://us02web.zoom.us/j/85317718785?pwd=XS0bILZaREyt00pA2EJlu1zxaEHbDN.1
Приходите!
Title: Квадраты вокруг многоугольников
Speaker: Федор Нилов
Аннотация:
В геометрических конструкциях зачастую оказывается интересным строить на сторонах произвольного многоугольника правильные многоугольники, например, в теоремах Пифагора, Наполеона, Тебо, Ван Обеля. Мы обсудим свойства конструкции из бесконечного числа слоев квадратов вокруг некоторых многоугольников и красивую идею шарнирного доказательства.
Zoom meeting link:
Zoom - Meeting ID: 853 1771 8785 Passcode: 549695
Link: https://us02web.zoom.us/j/85317718785?pwd=XS0bILZaREyt00pA2EJlu1zxaEHbDN.1
Приходите!
Zoom Video
Join our Cloud HD Video Meeting
Zoom is the leader in modern enterprise video communications, with an easy, reliable cloud platform for video and audio conferencing, chat, and webinars across mobile, desktop, and room systems. Zoom Rooms is the original software-based conference room solution…