Notice: file_put_contents(): Write of 5815 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50

Warning: file_put_contents(): Only 8192 of 14007 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50
Цифровой геноцид | Telegram Webview: gulagdigital/2536 -
Telegram Group & Telegram Channel
Абеляр и Элоиза схоластики XXI века: Инженерия знаний и Инженерия промтов

В этом мире, где каждая технологическая инновация стремится к определенному виду апокалипсиса знаний, роль инженерии знаний, безусловно, выходит на передний план. Основанная на онтологиях и тезаурусах, она представляет собой бастарда между архивариусом и алхимиком, вечно стремящимся к созданию экспертных систем и баз данных, подобно древним библиотекам Александрии… Последние 40 лет теорией, которая должна была наполнять данными ИИ была теория инженерии знаний, которая ориентирована на разработку экспертных систем и баз знаний при помощи онтологий и тезаурусов. К каждой такой инженерии прикладывался в рамках корпорации и свой менеджер знаний: фактически каждая компания имела отдельного менеджера знаний и инженеров знаний. На моей практике в СНГ это заменялось экспериментами с пресловутым и запрещенным ныне конфлюенс, а роль менеджера знаний редко когда выходила дальше редактирования этого пакета.
https://ru.wikipedia.org/wiki/%D0%98%D0%BD%D0%B6%D0%B5%D0%BD%D0%B5%D1%80%D0%B8%D1%8F_%D0%B7%D0%BD%D0%B0%D0%BD%D0%B8%D0%B9

Кажется, что LLM может быть интересной новацией, которая направлена именно на подзабытые дисциплины инженерии и менеджмента знаний внутри контура организаций. В октябрьской статье 2023 года Knowledge Engineering using Large Language Models предлагается взглянуть через призму больших языковых моделей, которые могут быть потенциальной революцией
https://arxiv.org/abs/2310.00637

Инженерия знаний приобрела известность в семидесятых годах, когда Эдвард Фейгенбаум и другие убедились, что автоматизация производства знаний посредством применения исследований в области искусственного интеллекта требует сосредоточения внимания на конкретной предметной области . В период с середины 1970-х по 1980-е годы возникла инженерия знаний основанных на правилах экспертных систем для целей автоматизации принятия решений в корпорация, но к началу девяностых годов стало ясно, что подход экспертных систем привел к созданию систем, которые были дорогими в обслуживании и трудными в адаптации, они не могли быстро изменяться в зависимости от контекста и изменяться вместе с требованиями. Фейгенбаум утверждал, что для успеха будущие системы, основанные на знаниях, должны быть масштабируемыми и глобально распределенными - в том числе, чтобы не увязнуть в бюрократических лабиринтах согласований.
LLM — это вероятностные модели естественного языка, обученные на очень больших массивах контента, в основном полученных из Интернета. Подобно предыдущим подходам к языковому моделированию, учитывая последовательность токенов, LLM прогнозируют вероятную следующую последовательность токенов на основе изученного распределения вероятностей таких последовательностей. Однако, из-за огромного количества контента, обрабатываемого при обучении, а также большого размера и архитектуры задействованных нейронных сетей, LLM демонстрируют замечательные возможности обработки естественного языка, которые намного превосходят более ранние подходы

Традиционно подходы к инженерии знаний фокусировались на знаниях, выраженных на формальных языках. Появление больших языковых моделей и их возможностей эффективно работать с естественным языком в самом широком смысле ставит вопросы об основах и практике инженерии знаний. Авторы статьи обрисовывают потенциальную роль LLM в инженерии знаний, выделяя два центральных направления: 1) создание гибридных нейросимволических систем знаний; и 2) обеспечение возможности инженерии знаний на естественном языке. В истории компьютерных исследований инженерии знаний знания часто рассматривались в первую очередь как символические выражения. Однако, знания на самом деле кодируются в различных средах и формах, в первую очередь в естественном языке, но также в изображениях, видео или даже электронных таблицах. Этот факт становится еще более очевидным, если взглянуть на практики институционального знания, которые развивались веками, например, в науке или архивах, библиотеках и фондах.



group-telegram.com/gulagdigital/2536
Create:
Last Update:

Абеляр и Элоиза схоластики XXI века: Инженерия знаний и Инженерия промтов

В этом мире, где каждая технологическая инновация стремится к определенному виду апокалипсиса знаний, роль инженерии знаний, безусловно, выходит на передний план. Основанная на онтологиях и тезаурусах, она представляет собой бастарда между архивариусом и алхимиком, вечно стремящимся к созданию экспертных систем и баз данных, подобно древним библиотекам Александрии… Последние 40 лет теорией, которая должна была наполнять данными ИИ была теория инженерии знаний, которая ориентирована на разработку экспертных систем и баз знаний при помощи онтологий и тезаурусов. К каждой такой инженерии прикладывался в рамках корпорации и свой менеджер знаний: фактически каждая компания имела отдельного менеджера знаний и инженеров знаний. На моей практике в СНГ это заменялось экспериментами с пресловутым и запрещенным ныне конфлюенс, а роль менеджера знаний редко когда выходила дальше редактирования этого пакета.
https://ru.wikipedia.org/wiki/%D0%98%D0%BD%D0%B6%D0%B5%D0%BD%D0%B5%D1%80%D0%B8%D1%8F_%D0%B7%D0%BD%D0%B0%D0%BD%D0%B8%D0%B9

Кажется, что LLM может быть интересной новацией, которая направлена именно на подзабытые дисциплины инженерии и менеджмента знаний внутри контура организаций. В октябрьской статье 2023 года Knowledge Engineering using Large Language Models предлагается взглянуть через призму больших языковых моделей, которые могут быть потенциальной революцией
https://arxiv.org/abs/2310.00637

Инженерия знаний приобрела известность в семидесятых годах, когда Эдвард Фейгенбаум и другие убедились, что автоматизация производства знаний посредством применения исследований в области искусственного интеллекта требует сосредоточения внимания на конкретной предметной области . В период с середины 1970-х по 1980-е годы возникла инженерия знаний основанных на правилах экспертных систем для целей автоматизации принятия решений в корпорация, но к началу девяностых годов стало ясно, что подход экспертных систем привел к созданию систем, которые были дорогими в обслуживании и трудными в адаптации, они не могли быстро изменяться в зависимости от контекста и изменяться вместе с требованиями. Фейгенбаум утверждал, что для успеха будущие системы, основанные на знаниях, должны быть масштабируемыми и глобально распределенными - в том числе, чтобы не увязнуть в бюрократических лабиринтах согласований.
LLM — это вероятностные модели естественного языка, обученные на очень больших массивах контента, в основном полученных из Интернета. Подобно предыдущим подходам к языковому моделированию, учитывая последовательность токенов, LLM прогнозируют вероятную следующую последовательность токенов на основе изученного распределения вероятностей таких последовательностей. Однако, из-за огромного количества контента, обрабатываемого при обучении, а также большого размера и архитектуры задействованных нейронных сетей, LLM демонстрируют замечательные возможности обработки естественного языка, которые намного превосходят более ранние подходы

Традиционно подходы к инженерии знаний фокусировались на знаниях, выраженных на формальных языках. Появление больших языковых моделей и их возможностей эффективно работать с естественным языком в самом широком смысле ставит вопросы об основах и практике инженерии знаний. Авторы статьи обрисовывают потенциальную роль LLM в инженерии знаний, выделяя два центральных направления: 1) создание гибридных нейросимволических систем знаний; и 2) обеспечение возможности инженерии знаний на естественном языке. В истории компьютерных исследований инженерии знаний знания часто рассматривались в первую очередь как символические выражения. Однако, знания на самом деле кодируются в различных средах и формах, в первую очередь в естественном языке, но также в изображениях, видео или даже электронных таблицах. Этот факт становится еще более очевидным, если взглянуть на практики институционального знания, которые развивались веками, например, в науке или архивах, библиотеках и фондах.

BY Цифровой геноцид


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/gulagdigital/2536

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

And while money initially moved into stocks in the morning, capital moved out of safe-haven assets. The price of the 10-year Treasury note fell Friday, sending its yield up to 2% from a March closing low of 1.73%. DFR Lab sent the image through Microsoft Azure's Face Verification program and found that it was "highly unlikely" that the person in the second photo was the same as the first woman. The fact-checker Logically AI also found the claim to be false. The woman, Olena Kurilo, was also captured in a video after the airstrike and shown to have the injuries. A Russian Telegram channel with over 700,000 followers is spreading disinformation about Russia's invasion of Ukraine under the guise of providing "objective information" and fact-checking fake news. Its influence extends beyond the platform, with major Russian publications, government officials, and journalists citing the page's posts. Given the pro-privacy stance of the platform, it’s taken as a given that it’ll be used for a number of reasons, not all of them good. And Telegram has been attached to a fair few scandals related to terrorism, sexual exploitation and crime. Back in 2015, Vox described Telegram as “ISIS’ app of choice,” saying that the platform’s real use is the ability to use channels to distribute material to large groups at once. Telegram has acted to remove public channels affiliated with terrorism, but Pavel Durov reiterated that he had no business snooping on private conversations. Such instructions could actually endanger people — citizens receive air strike warnings via smartphone alerts.
from it


Telegram Цифровой геноцид
FROM American