Warning: mkdir(): No space left on device in /var/www/group-telegram/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/math_hedgehog/--): Failed to open stream: No such file or directory in /var/www/group-telegram/post.php on line 50
Ёжик в матане | Telegram Webview: math_hedgehog/1712 -
Telegram Group & Telegram Channel
Как алгоритм "Monte Carlo Tree Search" помог чистому шахматному ИИ стать чемпионом.
-------
После предыдущего поста про сверхсложные задачи для ИИ у меня возникла дискуссия с читателем Ежика по поводу шахматного ИИ. Мы пытались выяснить, использует ли Альфа-зеро — наилучший, на данный момент, шахматный ИИ — таблицы шахматных комбинаций для оценки позиции и выбора хода? В частности мы говорили о таблицах шахматных окончаний Налимова — использовала ли их нейросеть на этапе обучения игре в шахматы или нет?
Если ответить кратко, то мы этого не знаем. Потому что Дипмайнд — разработчик Альфе-зеро — не выложила в открытый доступ код алгоритма, а всего лишь опубликовала его описание в статьях.
Silver D. et al. (2016)
Mastering the game of Go with deep neural networks and tree search.
doi.org/10.1038/na...
Silver D. (2018)
A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play.
doi.org/10.1126/sc...
Как настоящие джентльмены, мы должны научным статьям доверять. Если так, то получается, что Альфа-зеро при рождении являла собой "tabula rasa" — чистую доску, на которой были записаны лишь правила шахматной игры и некоторые начальные оценочные функции. Всему остальному она научилась, сыграв сама с собой огромное количество партий.
А стать наилучшем ИИ по игре в шахматы, а также Го и другие игры, ей помог алгоритм Monte Carlo Tree Search (MCTS) — то бишь метод случайного поиска в дереве (если, конечно, я правильно перевел название алгоритма). Вот давайте его немного и рассмотрим.
--------
Как и все монтекарловские алгоритмы, MCTS до безобразия прост, эффективен, но требует невообразимого количества ресурсов для достижения хороших результатов.
Шахматный ИИ, как и человек, выбирает следующий ход, используя дерево ходов, возможных из текущей позиции. Так как возможных ходов обычно много, и на каждом следующем уровне количество ходов катастрофически увеличивается, то просчитать все варианты ходов не под силу никакому суперкомпьютеру. Поэтому шахматные алгоритмы используют различные приемы, оптимизирующие выбор наилучшего хода. MCTS как раз и является таким приемом.
-------
Представим каждую позицию узлом дерева. В его корень поместим текущую позицию. От нее проведем ветки к позициям возникающим после каждого хода, получив одноуровневое дерево с листьями.
А вот дальше мы не будем продолжать построение дерева от каждого узла, а выберем только один из листов случайным образом. А от него просчитаем партию до конца, каждый раз выбирая ходы случайным образом (вот он метод Монте-Карло!). В конце-концов мы получим какой-то исход, которому припишем целое число: -1 (проигрыш), 0 (ничья), 1 (выигрыш).
Запомним этот результат в листе (узле), с которого мы начали случайное построение дерева. И теперь опять случайным образом выберем один из листов, и от него просчитаем партию до конца, опять же случайным образом выбирая каждый ход.
После многократных повторений этой процедуры и пересчета значений в начальных узлах, мы припишем начальным ходам числовые значения — баллы, равные сумме реультирующих балов всех партий, построенных после этого хода случайным выбором ходов. Каждый балл, соотнесенный к общему количеству партий, покажет вероятность того, что данный конкретный ход приведет к выигрышу. Очевидно, чем больше случайных партий мы просчитаем, тем точнее эти веса будут отражать реальные вероятности выигрышей.



group-telegram.com/math_hedgehog/1712
Create:
Last Update:

Как алгоритм "Monte Carlo Tree Search" помог чистому шахматному ИИ стать чемпионом.
-------
После предыдущего поста про сверхсложные задачи для ИИ у меня возникла дискуссия с читателем Ежика по поводу шахматного ИИ. Мы пытались выяснить, использует ли Альфа-зеро — наилучший, на данный момент, шахматный ИИ — таблицы шахматных комбинаций для оценки позиции и выбора хода? В частности мы говорили о таблицах шахматных окончаний Налимова — использовала ли их нейросеть на этапе обучения игре в шахматы или нет?
Если ответить кратко, то мы этого не знаем. Потому что Дипмайнд — разработчик Альфе-зеро — не выложила в открытый доступ код алгоритма, а всего лишь опубликовала его описание в статьях.
Silver D. et al. (2016)
Mastering the game of Go with deep neural networks and tree search.
doi.org/10.1038/na...
Silver D. (2018)
A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play.
doi.org/10.1126/sc...
Как настоящие джентльмены, мы должны научным статьям доверять. Если так, то получается, что Альфа-зеро при рождении являла собой "tabula rasa" — чистую доску, на которой были записаны лишь правила шахматной игры и некоторые начальные оценочные функции. Всему остальному она научилась, сыграв сама с собой огромное количество партий.
А стать наилучшем ИИ по игре в шахматы, а также Го и другие игры, ей помог алгоритм Monte Carlo Tree Search (MCTS) — то бишь метод случайного поиска в дереве (если, конечно, я правильно перевел название алгоритма). Вот давайте его немного и рассмотрим.
--------
Как и все монтекарловские алгоритмы, MCTS до безобразия прост, эффективен, но требует невообразимого количества ресурсов для достижения хороших результатов.
Шахматный ИИ, как и человек, выбирает следующий ход, используя дерево ходов, возможных из текущей позиции. Так как возможных ходов обычно много, и на каждом следующем уровне количество ходов катастрофически увеличивается, то просчитать все варианты ходов не под силу никакому суперкомпьютеру. Поэтому шахматные алгоритмы используют различные приемы, оптимизирующие выбор наилучшего хода. MCTS как раз и является таким приемом.
-------
Представим каждую позицию узлом дерева. В его корень поместим текущую позицию. От нее проведем ветки к позициям возникающим после каждого хода, получив одноуровневое дерево с листьями.
А вот дальше мы не будем продолжать построение дерева от каждого узла, а выберем только один из листов случайным образом. А от него просчитаем партию до конца, каждый раз выбирая ходы случайным образом (вот он метод Монте-Карло!). В конце-концов мы получим какой-то исход, которому припишем целое число: -1 (проигрыш), 0 (ничья), 1 (выигрыш).
Запомним этот результат в листе (узле), с которого мы начали случайное построение дерева. И теперь опять случайным образом выберем один из листов, и от него просчитаем партию до конца, опять же случайным образом выбирая каждый ход.
После многократных повторений этой процедуры и пересчета значений в начальных узлах, мы припишем начальным ходам числовые значения — баллы, равные сумме реультирующих балов всех партий, построенных после этого хода случайным выбором ходов. Каждый балл, соотнесенный к общему количеству партий, покажет вероятность того, что данный конкретный ход приведет к выигрышу. Очевидно, чем больше случайных партий мы просчитаем, тем точнее эти веса будут отражать реальные вероятности выигрышей.

BY Ёжик в матане


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/math_hedgehog/1712

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The regulator took order for the search and seizure operation from Judge Purushottam B Jadhav, Sebi Special Judge / Additional Sessions Judge. At the start of 2018, the company attempted to launch an Initial Coin Offering (ICO) which would enable it to enable payments (and earn the cash that comes from doing so). The initial signals were promising, especially given Telegram’s user base is already fairly crypto-savvy. It raised an initial tranche of cash – worth more than a billion dollars – to help develop the coin before opening sales to the public. Unfortunately, third-party sales of coins bought in those initial fundraising rounds raised the ire of the SEC, which brought the hammer down on the whole operation. In 2020, officials ordered Telegram to pay a fine of $18.5 million and hand back much of the cash that it had raised. Since January 2022, the SC has received a total of 47 complaints and enquiries on illegal investment schemes promoted through Telegram. These fraudulent schemes offer non-existent investment opportunities, promising very attractive and risk-free returns within a short span of time. They commonly offer unrealistic returns of as high as 1,000% within 24 hours or even within a few hours. Stocks closed in the red Friday as investors weighed upbeat remarks from Russian President Vladimir Putin about diplomatic discussions with Ukraine against a weaker-than-expected print on U.S. consumer sentiment. "There are several million Russians who can lift their head up from propaganda and try to look for other sources, and I'd say that most look for it on Telegram," he said.
from it


Telegram Ёжик в матане
FROM American