Telegram Group & Telegram Channel
Я собирался рассказывать о том, что узнал на конференции на прошлой неделе — но понял, что мне в качестве иллюстрации нужен рассказ, который интересн сам по себе. Итак:

Последовательность Морса-Туэ.

Давайте строить последовательность конечных слов w_n из 0 и 1 так:
*) w_0= 0
*) а каждое следующее получается приписыванием к предыдущему его «негатива» N(w_n): слова, получаемого из w_n заменой 0 на 1 и 1 на 0.
Тогда
w_0=0
w_1=01
w_2=0110
w_3=01101001
w_4=0110100110010110
и так далее.
Тогда, раз каждое следующее слово продолжает предыдущее, они все являются началами некоторого бесконечного слова w:

w = 01101001100101101001011001101001…

Определение. Это бесконечное слово w (бесконечная последовательность 0 и 1) называется последовательностью Морса-Туэ.

Эту последовательность можно определять и по-другому, с помощью замен. А именно: пусть T это отображение на множестве конечных слов, заменяющее каждый символ 0 на 01, а каждый 1 на 10. Например,
T(001)=010110.
Так вот — тогда нашу последовательность конечных слов можно получить, просто раз за разом применяя T:
T(w_n)=w_{n+1}.
И это ну совсем несложно увидеть по индукции. Действительно,
если
T(w_{n-1})=w_n,
то (поскольку T коммутирует со « взятием негатива » N(.) — заменой 0 на 1 и обратно)
T(N(w_{n-1})) = N(T(w_{n-1}))=N(w_n),
и потому
T(w_n) = T(w_{n-1} N(w_{n-1})) = w_n N(w_n) = w_{n+1}.
Вот и всё.

Соответственно, вся бесконечная последовательность Морса-Туэ w это то, что получается, если "применить замену T к w_0=0 бесконечное число раз".

(Собственно, подстановочные слова я в этом канале уже упоминал, вспоминая слово Фибоначчи, получающееся чередой замен A->AB, B->A, и разные красивые вещи, которые по соседству получаются; ну а тут правила чуть-чуть другие.)



group-telegram.com/mathtabletalks/4284
Create:
Last Update:

Я собирался рассказывать о том, что узнал на конференции на прошлой неделе — но понял, что мне в качестве иллюстрации нужен рассказ, который интересн сам по себе. Итак:

Последовательность Морса-Туэ.

Давайте строить последовательность конечных слов w_n из 0 и 1 так:
*) w_0= 0
*) а каждое следующее получается приписыванием к предыдущему его «негатива» N(w_n): слова, получаемого из w_n заменой 0 на 1 и 1 на 0.
Тогда
w_0=0
w_1=01
w_2=0110
w_3=01101001
w_4=0110100110010110
и так далее.
Тогда, раз каждое следующее слово продолжает предыдущее, они все являются началами некоторого бесконечного слова w:

w = 01101001100101101001011001101001…

Определение. Это бесконечное слово w (бесконечная последовательность 0 и 1) называется последовательностью Морса-Туэ.

Эту последовательность можно определять и по-другому, с помощью замен. А именно: пусть T это отображение на множестве конечных слов, заменяющее каждый символ 0 на 01, а каждый 1 на 10. Например,
T(001)=010110.
Так вот — тогда нашу последовательность конечных слов можно получить, просто раз за разом применяя T:
T(w_n)=w_{n+1}.
И это ну совсем несложно увидеть по индукции. Действительно,
если
T(w_{n-1})=w_n,
то (поскольку T коммутирует со « взятием негатива » N(.) — заменой 0 на 1 и обратно)
T(N(w_{n-1})) = N(T(w_{n-1}))=N(w_n),
и потому
T(w_n) = T(w_{n-1} N(w_{n-1})) = w_n N(w_n) = w_{n+1}.
Вот и всё.

Соответственно, вся бесконечная последовательность Морса-Туэ w это то, что получается, если "применить замену T к w_0=0 бесконечное число раз".

(Собственно, подстановочные слова я в этом канале уже упоминал, вспоминая слово Фибоначчи, получающееся чередой замен A->AB, B->A, и разные красивые вещи, которые по соседству получаются; ну а тут правила чуть-чуть другие.)

BY Математические байки


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/mathtabletalks/4284

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Telegram has gained a reputation as the “secure” communications app in the post-Soviet states, but whenever you make choices about your digital security, it’s important to start by asking yourself, “What exactly am I securing? And who am I securing it from?” These questions should inform your decisions about whether you are using the right tool or platform for your digital security needs. Telegram is certainly not the most secure messaging app on the market right now. Its security model requires users to place a great deal of trust in Telegram’s ability to protect user data. For some users, this may be good enough for now. For others, it may be wiser to move to a different platform for certain kinds of high-risk communications. The regulator said it has been undertaking several campaigns to educate the investors to be vigilant while taking investment decisions based on stock tips. Emerson Brooking, a disinformation expert at the Atlantic Council's Digital Forensic Research Lab, said: "Back in the Wild West period of content moderation, like 2014 or 2015, maybe they could have gotten away with it, but it stands in marked contrast with how other companies run themselves today." In 2018, Russia banned Telegram although it reversed the prohibition two years later. "There are a lot of things that Telegram could have been doing this whole time. And they know exactly what they are and they've chosen not to do them. That's why I don't trust them," she said.
from it


Telegram Математические байки
FROM American