Telegram Group & Telegram Channel
Доказательная медицина (ч.1., ч.2.) Первый подход к интерпретации результатов

Итак, что из себя представляет статистическое доказательство и какие ограничения это порождает с чисто математической стороны? Для этого давайте посмотрим на очень типичный исследовательский сценарий. Для наглядности возьмём какой-нибудь непрерывный показатель – скажем, мы сравниваем снижение давления в результате назначения двух препаратов двум случайно распределённым группам пациентов – одной препарат А (красный), другой – препарат Б(синий).

Как происходит их сравнение? Сначала оценивается характер распределения каждой из величин. в зависимости от того, параметрический он или нет, выбирается метод сравнения двух непрерывных величин. Далее, в зависимости от уровня значимости различий, делается вывод о том, имеет ли такое различие место в генеральной совокупности.

В части собственно вычислительной медицина демонстрирует небыстрый, но устойчивый прогресс, особенно что касается тех публикаций, которые в дальнейшем формируют базу доказательной медицины. Посмотрим, однако, на неочевидную сторону вопроса, в которой зачастую совершается методическая ошибка.

На графике, где по оси абсцисс отложен результат применения препарата, а по оси ординат – количество больных в исследуемой группе с таким уровнем расхождения, можно видеть, что оба параметра имеют довольно большую область перекрытия. Очевидно, в этой области значений существует немалый массив пациентов, которым препарат В помог лучше, чем препарат А, хотя в целом наглядная картина демонстрирует превосходство препарата А (что, однако, нуждается в проверке формальным статистическим инструментарием).

Безусловно, анализ причин, по которой какой-то группе пациентов лучше могло бы помочь в целом менее эффективное лечение, является значимым элементом научного поиска в таких исследованиях; исследователи зачастую проводит анализ в подгруппах в т.ч. чтобы точнее описать портрет пациентов из «области перекрытия».

В чём проблема с этими вполне очевидными ограничениями? В том, что они при трактовке результатов исчезают в первую очередь. «В группе пациентов препарат А в среднем показывает лучший эффект по сравнению с препаратом Б с определёнными уровнем доказательности и в определённом доверительном интервале» моментально превращается в «Препарат А эффективнее препарата Б». И это, пожалуй, первый значимый пример ошибочной трактовки результатов доказательных медицинских исследований, который виден, увы, на регулярной основе в СМИ и в профессиональной дискуссии. В следующий раз мы рассмотрим примеры ошибок, связанных с экстраполяцией результатов исследований.



group-telegram.com/orgzdravrus/146
Create:
Last Update:

Доказательная медицина (ч.1., ч.2.) Первый подход к интерпретации результатов

Итак, что из себя представляет статистическое доказательство и какие ограничения это порождает с чисто математической стороны? Для этого давайте посмотрим на очень типичный исследовательский сценарий. Для наглядности возьмём какой-нибудь непрерывный показатель – скажем, мы сравниваем снижение давления в результате назначения двух препаратов двум случайно распределённым группам пациентов – одной препарат А (красный), другой – препарат Б(синий).

Как происходит их сравнение? Сначала оценивается характер распределения каждой из величин. в зависимости от того, параметрический он или нет, выбирается метод сравнения двух непрерывных величин. Далее, в зависимости от уровня значимости различий, делается вывод о том, имеет ли такое различие место в генеральной совокупности.

В части собственно вычислительной медицина демонстрирует небыстрый, но устойчивый прогресс, особенно что касается тех публикаций, которые в дальнейшем формируют базу доказательной медицины. Посмотрим, однако, на неочевидную сторону вопроса, в которой зачастую совершается методическая ошибка.

На графике, где по оси абсцисс отложен результат применения препарата, а по оси ординат – количество больных в исследуемой группе с таким уровнем расхождения, можно видеть, что оба параметра имеют довольно большую область перекрытия. Очевидно, в этой области значений существует немалый массив пациентов, которым препарат В помог лучше, чем препарат А, хотя в целом наглядная картина демонстрирует превосходство препарата А (что, однако, нуждается в проверке формальным статистическим инструментарием).

Безусловно, анализ причин, по которой какой-то группе пациентов лучше могло бы помочь в целом менее эффективное лечение, является значимым элементом научного поиска в таких исследованиях; исследователи зачастую проводит анализ в подгруппах в т.ч. чтобы точнее описать портрет пациентов из «области перекрытия».

В чём проблема с этими вполне очевидными ограничениями? В том, что они при трактовке результатов исчезают в первую очередь. «В группе пациентов препарат А в среднем показывает лучший эффект по сравнению с препаратом Б с определёнными уровнем доказательности и в определённом доверительном интервале» моментально превращается в «Препарат А эффективнее препарата Б». И это, пожалуй, первый значимый пример ошибочной трактовки результатов доказательных медицинских исследований, который виден, увы, на регулярной основе в СМИ и в профессиональной дискуссии. В следующий раз мы рассмотрим примеры ошибок, связанных с экстраполяцией результатов исследований.

BY Субъективный оргздрав




Share with your friend now:
group-telegram.com/orgzdravrus/146

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

In addition, Telegram now supports the use of third-party streaming tools like OBS Studio and XSplit to broadcast live video, allowing users to add overlays and multi-screen layouts for a more professional look. Overall, extreme levels of fear in the market seems to have morphed into something more resembling concern. For example, the Cboe Volatility Index fell from its 2022 peak of 36, which it hit Monday, to around 30 on Friday, a sign of easing tensions. Meanwhile, while the price of WTI crude oil slipped from Sunday’s multiyear high $130 of barrel to $109 a pop. Markets have been expecting heavy restrictions on Russian oil, some of which the U.S. has already imposed, and that would reduce the global supply and bring about even more burdensome inflation. These entities are reportedly operating nine Telegram channels with more than five million subscribers to whom they were making recommendations on selected listed scrips. Such recommendations induced the investors to deal in the said scrips, thereby creating artificial volume and price rise. The War on Fakes channel has repeatedly attempted to push conspiracies that footage from Ukraine is somehow being falsified. One post on the channel from February 24 claimed without evidence that a widely viewed photo of a Ukrainian woman injured in an airstrike in the city of Chuhuiv was doctored and that the woman was seen in a different photo days later without injuries. The post, which has over 600,000 views, also baselessly claimed that the woman's blood was actually makeup or grape juice. In 2018, Russia banned Telegram although it reversed the prohibition two years later.
from it


Telegram Субъективный оргздрав
FROM American