Telegram Group & Telegram Channel
Как мы уже писали, Локк понаписал странного про числа и бесконечность. Так, число Локк определяет как простейшую и наиболее общую идею, единицу, единство. Вот и пойти тут пойми: это определение про числа, единицу или про единство. Но если не придираться, то общая идея все же будет ясна: когда мы смотрим на любую одну вещь, то понимаем, что она, вещь, — одна. Мы эту идею единичности понимаем одновременно и как идею целостности, даже если перед нами какая-то одна сложная вещь, например, толпа, группа студентов или армия. А потом мы просто складываем один и один и получаем два. Остальное дело техники, так получаются все числа. Тут целый букет проблем. Например, Беркли указывает на то, что он собственно не воспринимает, что вещь одна: во всяком случае, в том смысле, в котором он воспринимает цвета и формы. Нельзя указать на единицу в том смысле, в каком можно указать на красное пятно или круглый шар. Другая проблема состоит в том, что неясно, когда появляется идея единицы: когда я воспринимаю красное пятно, я одновременно вижу и его единичность? Это странно, так как идея красного, по Локку, это простая идея. Получается, что каждая простая идея всегда едет в связки с другой простой идеей, идеей единицы? Третья очевидная проблема подхода Локка состоит в том, что мы он не объясняет, почему мы не можем получить сложную идею, например, 2, не путем сложения 1 и 1, а путем вычитания 1 из 3. Четвертая трудность: как мы получаем идеи больших чисел? Вряд ли мы складываем единицы, чтобы получить 75674037. И, наконец, есть не только натуральные числа, и во времена Локка это было прекрасно известно.
Почти все это Локку высказал уже Лейбниц, и кое-то из этого повторяется в локковедческой литературе. Например, в книге "Джон Локк" R.I. Aaron'a (1937). Но есть и те, кто Локка защищают. Причем делают они это порой очень мощно. Например, Edward E. Dawson в 1959 году подключает Локка к дискуссиям о природе числа, которые были частью споров об основаниях математики век назад. И Локк в его глазах оказывается интуиционистом в отношении математики! И вот почему: потому что интуиционисты считают, что мы начинаем с понятия натуральных чисел, которые нам настолько знакомы, что они должны быть признаны основой математики. "В восприятии любого предмета мы представляем его себе как сущность, отвлекаясь от его частных свойств. Мы познаем также возможность неограниченного повторения этой сущности. Здесь-то и лежит источник понятия натурального числа" (Гейтинг А. Интуиционизм. Введение. М.: Мир, 1965, с. 22). Да, считает Доусон, Локк не объясняет не-целые числа, но он и не хочет этого делать! Вы говорите, что локковский подход к двойке неадекватен? Ответ: адекватен, потому что ... ну а какой тогда адекватный? Не существует, считает Доусон, никакого другого определения для целого числа, кроме индуктивного определения, данного в терминах повторения применения функции следования. Но Локк не дает такого определения числа. Число он определяет как простейшую и наиболее общую идею, а вот модусы числа порождаются сложением. Ох-ох.

Интересно, если бы Локк узнал, что он интуиционист — принял бы он то, что придется отказаться от закона исключенного третьего?



group-telegram.com/philosophycafemoscow/2186
Create:
Last Update:

Как мы уже писали, Локк понаписал странного про числа и бесконечность. Так, число Локк определяет как простейшую и наиболее общую идею, единицу, единство. Вот и пойти тут пойми: это определение про числа, единицу или про единство. Но если не придираться, то общая идея все же будет ясна: когда мы смотрим на любую одну вещь, то понимаем, что она, вещь, — одна. Мы эту идею единичности понимаем одновременно и как идею целостности, даже если перед нами какая-то одна сложная вещь, например, толпа, группа студентов или армия. А потом мы просто складываем один и один и получаем два. Остальное дело техники, так получаются все числа. Тут целый букет проблем. Например, Беркли указывает на то, что он собственно не воспринимает, что вещь одна: во всяком случае, в том смысле, в котором он воспринимает цвета и формы. Нельзя указать на единицу в том смысле, в каком можно указать на красное пятно или круглый шар. Другая проблема состоит в том, что неясно, когда появляется идея единицы: когда я воспринимаю красное пятно, я одновременно вижу и его единичность? Это странно, так как идея красного, по Локку, это простая идея. Получается, что каждая простая идея всегда едет в связки с другой простой идеей, идеей единицы? Третья очевидная проблема подхода Локка состоит в том, что мы он не объясняет, почему мы не можем получить сложную идею, например, 2, не путем сложения 1 и 1, а путем вычитания 1 из 3. Четвертая трудность: как мы получаем идеи больших чисел? Вряд ли мы складываем единицы, чтобы получить 75674037. И, наконец, есть не только натуральные числа, и во времена Локка это было прекрасно известно.
Почти все это Локку высказал уже Лейбниц, и кое-то из этого повторяется в локковедческой литературе. Например, в книге "Джон Локк" R.I. Aaron'a (1937). Но есть и те, кто Локка защищают. Причем делают они это порой очень мощно. Например, Edward E. Dawson в 1959 году подключает Локка к дискуссиям о природе числа, которые были частью споров об основаниях математики век назад. И Локк в его глазах оказывается интуиционистом в отношении математики! И вот почему: потому что интуиционисты считают, что мы начинаем с понятия натуральных чисел, которые нам настолько знакомы, что они должны быть признаны основой математики. "В восприятии любого предмета мы представляем его себе как сущность, отвлекаясь от его частных свойств. Мы познаем также возможность неограниченного повторения этой сущности. Здесь-то и лежит источник понятия натурального числа" (Гейтинг А. Интуиционизм. Введение. М.: Мир, 1965, с. 22). Да, считает Доусон, Локк не объясняет не-целые числа, но он и не хочет этого делать! Вы говорите, что локковский подход к двойке неадекватен? Ответ: адекватен, потому что ... ну а какой тогда адекватный? Не существует, считает Доусон, никакого другого определения для целого числа, кроме индуктивного определения, данного в терминах повторения применения функции следования. Но Локк не дает такого определения числа. Число он определяет как простейшую и наиболее общую идею, а вот модусы числа порождаются сложением. Ох-ох.

Интересно, если бы Локк узнал, что он интуиционист — принял бы он то, что придется отказаться от закона исключенного третьего?

BY Философское кафе


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/philosophycafemoscow/2186

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The regulator said it had received information that messages containing stock tips and other investment advice with respect to selected listed companies are being widely circulated through websites and social media platforms such as Telegram, Facebook, WhatsApp and Instagram. One thing that Telegram now offers to all users is the ability to “disappear” messages or set remote deletion deadlines. That enables users to have much more control over how long people can access what you’re sending them. Given that Russian law enforcement officials are reportedly (via Insider) stopping people in the street and demanding to read their text messages, this could be vital to protect individuals from reprisals. The last couple days have exemplified that uncertainty. On Thursday, news emerged that talks in Turkey between the Russia and Ukraine yielded no positive result. But on Friday, Reuters reported that Russian President Vladimir Putin said there had been some “positive shifts” in talks between the two sides. For example, WhatsApp restricted the number of times a user could forward something, and developed automated systems that detect and flag objectionable content. On December 23rd, 2020, Pavel Durov posted to his channel that the company would need to start generating revenue. In early 2021, he added that any advertising on the platform would not use user data for targeting, and that it would be focused on “large one-to-many channels.” He pledged that ads would be “non-intrusive” and that most users would simply not notice any change.
from it


Telegram Философское кафе
FROM American