Notice: file_put_contents(): Write of 9601 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50

Warning: file_put_contents(): Only 4096 of 13697 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50
Запрети мне псевдолейблить | Telegram Webview: pseudolabeling/216 -
Telegram Group & Telegram Channel
Запрети мне псевдолейблить
Про что был NeurIPS Competition track в этом году? Соревнование было посвящено определению состава атмосферы экзопланет в космосе. Экзопланеты- это любые планеты, которые вращаются вокруг звезд вне солнечной системы. Теоретически, развитие методов их анализа…
🚀 Разбираем решение, которое принесло нашей команде 6-е место в Kaggle-соревновании по обработке данных миссии Ariel

Пост про то, что это вообще за сорева вот тут.

Мы работали с частотными сигналами, которые изначально были очень шумными. Для их сглаживания использовали:
1️⃣
Гауссовский регрессор
2️⃣
Фильтр Савицкого-Голея

Далее ищем границы транзитной зоны планеты. Делаем через простой эмпирический детектор: транзит на графике светимости звезды имеет вид \_/ — яркость падает, когда планета проходит перед звездой, так как часть частотных компонентов теряет интенсивность.

📉 Что мы делали дальше:
Удаляем этапы до и после транзита, чтобы анализировать только изменения светимости в нужный момент.
"Поднимаем" транзит обратно к уровню светимости звезды, чтобы восстановить исходный "пульс звезды". Это важно, чтобы учесть глобальное поведение светимости звезды, которе не очень-то и постоянное.

🔍 Фичи и модели:

На основе изменений яркости между ожидаемыми и наблюдаемыми значениями на заданных частотах извлекали фичи. Эти частоты совпадают с важными таргетами — спектрограммой атмосферы экзопланеты.
Обучаем линейную регрессию глобально для каждого таргета, подбирая оптимальные коэффициенты. В смысле берем все моменты времени для всех транзитов и конкретной частоты и ищем коэффициент подгонки.

Параллельно обучаем CNN, которая анализировала частотные изменения в заданных временных окнах.
Это:
Помогает учитывало локальные особенности спектра и переходов (энергии?) между частотами
Позволяло понять взаимосвязи между соседними частотами, улучшая точность предсказаний.
🔗 Финал:


Смешали (блендили) результаты линейной регрессии и CNN. Затем финальную спектрограмму еще раз сгладили, чтобы убрать артефакты.

💡 Бонус материал: пример 'подъема' спектра на картинке
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/pseudolabeling/216
Create:
Last Update:

🚀 Разбираем решение, которое принесло нашей команде 6-е место в Kaggle-соревновании по обработке данных миссии Ariel

Пост про то, что это вообще за сорева вот тут.

Мы работали с частотными сигналами, которые изначально были очень шумными. Для их сглаживания использовали:
1️⃣
Гауссовский регрессор
2️⃣
Фильтр Савицкого-Голея

Далее ищем границы транзитной зоны планеты. Делаем через простой эмпирический детектор: транзит на графике светимости звезды имеет вид \_/ — яркость падает, когда планета проходит перед звездой, так как часть частотных компонентов теряет интенсивность.

📉 Что мы делали дальше:
Удаляем этапы до и после транзита, чтобы анализировать только изменения светимости в нужный момент.
"Поднимаем" транзит обратно к уровню светимости звезды, чтобы восстановить исходный "пульс звезды". Это важно, чтобы учесть глобальное поведение светимости звезды, которе не очень-то и постоянное.

🔍 Фичи и модели:

На основе изменений яркости между ожидаемыми и наблюдаемыми значениями на заданных частотах извлекали фичи. Эти частоты совпадают с важными таргетами — спектрограммой атмосферы экзопланеты.
Обучаем линейную регрессию глобально для каждого таргета, подбирая оптимальные коэффициенты. В смысле берем все моменты времени для всех транзитов и конкретной частоты и ищем коэффициент подгонки.

Параллельно обучаем CNN, которая анализировала частотные изменения в заданных временных окнах.
Это:
Помогает учитывало локальные особенности спектра и переходов (энергии?) между частотами
Позволяло понять взаимосвязи между соседними частотами, улучшая точность предсказаний.
🔗 Финал:


Смешали (блендили) результаты линейной регрессии и CNN. Затем финальную спектрограмму еще раз сгладили, чтобы убрать артефакты.

💡 Бонус материал: пример 'подъема' спектра на картинке

BY Запрети мне псевдолейблить





Share with your friend now:
group-telegram.com/pseudolabeling/216

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The message was not authentic, with the real Zelenskiy soon denying the claim on his official Telegram channel, but the incident highlighted a major problem: disinformation quickly spreads unchecked on the encrypted app. Multiple pro-Kremlin media figures circulated the post's false claims, including prominent Russian journalist Vladimir Soloviev and the state-controlled Russian outlet RT, according to the DFR Lab's report. Channels are not fully encrypted, end-to-end. All communications on a Telegram channel can be seen by anyone on the channel and are also visible to Telegram. Telegram may be asked by a government to hand over the communications from a channel. Telegram has a history of standing up to Russian government requests for data, but how comfortable you are relying on that history to predict future behavior is up to you. Because Telegram has this data, it may also be stolen by hackers or leaked by an internal employee. Ukrainian President Volodymyr Zelensky said in a video message on Tuesday that Ukrainian forces "destroy the invaders wherever we can." But the Ukraine Crisis Media Center's Tsekhanovska points out that communications are often down in zones most affected by the war, making this sort of cross-referencing a luxury many cannot afford.
from it


Telegram Запрети мне псевдолейблить
FROM American