Notice: file_put_contents(): Write of 3827 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50

Warning: file_put_contents(): Only 8192 of 12019 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50
Qetzal ad libitum, ad infinitum | Telegram Webview: qetzal_1up/1029 -
Telegram Group & Telegram Channel
Умение строить модели окружающего мира
Мир вокруг нас — сложный. Мы не можем вообразить его полностью, но мы можем представить его модель — подобие мира, которое может дать нам информацию о мире. Когда мы размышляем о том, почему летают самолеты, как работает монархия или почему наш собеседник нахмурился — мы строим модели.

Чем точнее модель — тем лучше и больше информации мы можем из неё получить. Опыт, знание фактов и того "как всё работает", понимание причин и следствий внутри системы — помогают построить более правильную, более сложную модель (мета-модель: модель моделей и так далее).

Умение проводить симуляции в моделях и предсказывать будущее
Цель моделирования мира, ситуаций, других людей, идей — получать из этих моделей информацию. Для этого мы проводим симуляции внутри нашей модели. Мы представляем эти модели в движении, запускаем внутри упрощенную копию части мира и смотрим на результат. Симуляция это по сути тоже модель — но модель в движении.

Это даёт нам возможность предсказывать будущее. "Если я сделаю А, то в результате скорее всего будет Б".

Результат симуляции зависит и от умения это делать, но и от качества моделей тоже. Очевидно, что чем модель ближе к реальности — тем точнее симуляция. Чем дальше по линии времени мы можем проводить симуляцию (на сколько ходов вперёд) — тем лучше мы предскажем будущее.

Умение использовать результат симуляции для того, чтобы достигать своих целей
Точная модель и симуляции приводят к понимаю "Если я сделаю А, то в результате скорее всего будет Б". Но остаётся важный шаг — сделать этот шаг "А". Переводя на наш язык — иметь такую модель, что плюсы от "сделать А" превышают плюсы от "не сделать А" на долговременном промежутке времени.

Это недооцененный пункт. Мало знать как правильно, если это не ведёт к действиям.

По сути на этом этапе происходит тестирование модели и симуляции "на прочность", проверка — работают ли они или нет и обновление при несовпадении с реальностью.

Что же из этого следует
Если принять этот подход, то из него следует несколько очевидных выводов.

— Ум не однороден "сразу умный во всём". В какой-то области человек может иметь точные модели, а в каких-то — нет. Клише про профессора, гения в своей области, который беспомощен в быту — это как раз про это.
— В любом примере глупости можно найти корневую причину — или неправильную модель или недостаток в симуляции. Глупость, как правило, не выглядит глупостью для делающего, ведь в его модели это правильный путь. Подросток, который делает себе татуировку на лице, считает это крутым шагом именно потому, что его модель мира и симуляция дальнейших действий не работает дальше пары месяцев.
— Чтобы становится умней — надо делать более сложные модели и симуляции, которые максимально приближены к миру. Многие вещи, которые на первый взгляд бесполезны (широкая кроссфункциональность, наблюдение за людьми, изучение истории и т.д.) — на деле работают на усложнение модели.



group-telegram.com/qetzal_1up/1029
Create:
Last Update:

Умение строить модели окружающего мира
Мир вокруг нас — сложный. Мы не можем вообразить его полностью, но мы можем представить его модель — подобие мира, которое может дать нам информацию о мире. Когда мы размышляем о том, почему летают самолеты, как работает монархия или почему наш собеседник нахмурился — мы строим модели.

Чем точнее модель — тем лучше и больше информации мы можем из неё получить. Опыт, знание фактов и того "как всё работает", понимание причин и следствий внутри системы — помогают построить более правильную, более сложную модель (мета-модель: модель моделей и так далее).

Умение проводить симуляции в моделях и предсказывать будущее
Цель моделирования мира, ситуаций, других людей, идей — получать из этих моделей информацию. Для этого мы проводим симуляции внутри нашей модели. Мы представляем эти модели в движении, запускаем внутри упрощенную копию части мира и смотрим на результат. Симуляция это по сути тоже модель — но модель в движении.

Это даёт нам возможность предсказывать будущее. "Если я сделаю А, то в результате скорее всего будет Б".

Результат симуляции зависит и от умения это делать, но и от качества моделей тоже. Очевидно, что чем модель ближе к реальности — тем точнее симуляция. Чем дальше по линии времени мы можем проводить симуляцию (на сколько ходов вперёд) — тем лучше мы предскажем будущее.

Умение использовать результат симуляции для того, чтобы достигать своих целей
Точная модель и симуляции приводят к понимаю "Если я сделаю А, то в результате скорее всего будет Б". Но остаётся важный шаг — сделать этот шаг "А". Переводя на наш язык — иметь такую модель, что плюсы от "сделать А" превышают плюсы от "не сделать А" на долговременном промежутке времени.

Это недооцененный пункт. Мало знать как правильно, если это не ведёт к действиям.

По сути на этом этапе происходит тестирование модели и симуляции "на прочность", проверка — работают ли они или нет и обновление при несовпадении с реальностью.

Что же из этого следует
Если принять этот подход, то из него следует несколько очевидных выводов.

— Ум не однороден "сразу умный во всём". В какой-то области человек может иметь точные модели, а в каких-то — нет. Клише про профессора, гения в своей области, который беспомощен в быту — это как раз про это.
— В любом примере глупости можно найти корневую причину — или неправильную модель или недостаток в симуляции. Глупость, как правило, не выглядит глупостью для делающего, ведь в его модели это правильный путь. Подросток, который делает себе татуировку на лице, считает это крутым шагом именно потому, что его модель мира и симуляция дальнейших действий не работает дальше пары месяцев.
— Чтобы становится умней — надо делать более сложные модели и симуляции, которые максимально приближены к миру. Многие вещи, которые на первый взгляд бесполезны (широкая кроссфункциональность, наблюдение за людьми, изучение истории и т.д.) — на деле работают на усложнение модели.

BY Qetzal ad libitum, ad infinitum


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/qetzal_1up/1029

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

At the start of 2018, the company attempted to launch an Initial Coin Offering (ICO) which would enable it to enable payments (and earn the cash that comes from doing so). The initial signals were promising, especially given Telegram’s user base is already fairly crypto-savvy. It raised an initial tranche of cash – worth more than a billion dollars – to help develop the coin before opening sales to the public. Unfortunately, third-party sales of coins bought in those initial fundraising rounds raised the ire of the SEC, which brought the hammer down on the whole operation. In 2020, officials ordered Telegram to pay a fine of $18.5 million and hand back much of the cash that it had raised. Ukrainian forces have since put up a strong resistance to the Russian troops amid the war that has left hundreds of Ukrainian civilians, including children, dead, according to the United Nations. Ukrainian and international officials have accused Russia of targeting civilian populations with shelling and bombardments. At this point, however, Durov had already been working on Telegram with his brother, and further planned a mobile-first social network with an explicit focus on anti-censorship. Later in April, he told TechCrunch that he had left Russia and had “no plans to go back,” saying that the nation was currently “incompatible with internet business at the moment.” He added later that he was looking for a country that matched his libertarian ideals to base his next startup. READ MORE Stocks dropped on Friday afternoon, as gains made earlier in the day on hopes for diplomatic progress between Russia and Ukraine turned to losses. Technology stocks were hit particularly hard by higher bond yields.
from it


Telegram Qetzal ad libitum, ad infinitum
FROM American